Цилиндр геометрия

wiki.eduVdom.com

Цилиндром (прямым круговым цилиндром) называется тело, состоящее из двух кругов (оснований цилиндра), совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие при параллельном переносе точки этих кругов. Отрезки, соединяющие соответствующие точки окружностей оснований, называются образующими цилиндра.

Цилиндр является телом вращения.

Цилиндр

Рис.1

Вот другое определение:

Цилиндр — тело, которое ограничено цилиндрической поверхностью с замкнутой направляющей и двумя параллельными плоскостями, пересекающими образующие данной поверхности.

Цилиндрическая поверхность — поверхность, которая образуется движением прямой линии вдоль некоторой кривой. Прямую называют образующей цилиндрической поверхности, а кривую линию — направляющей цилиндрической поверхности.

Боковая поверхность цилиндра — часть цилиндрической поверхности, которая ограничена параллельными плоскостями.

Основания цилиндра — части параллельных плоскостей, отсекаемые боковой поверхностью цилиндра.

Рис.1 мини

Цилиндр называется прямым (См.Рис.1), если его образующие перпендикулярны плоскостям оснований. В противном случае цилиндр называется наклонным.

Круговой цилиндр — цилиндр, основания которого являются кругами.

Прямой круговой цилиндр (просто цилиндр) – это тело, полученное при вращении прямоугольника вокруг одной из его сторон. См.Рис.1.

Радиус цилиндра – радиус его основания.

Образующая цилиндра — образующая цилиндрической поверхности.

Высотой цилиндра называется расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением.

Ось цилиндра параллельна его образующей и является осью симметрии цилиндра.

Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью цилиндра. См.Рис.2.

Рис.2

Развёртка боковой поверхности цилиндра — прямоугольник со сторонами, равными высоте цилиндра и длине окружности основания.

Призма есть частный вид цилиндра (образующие параллельны боковым ребрам; направляющая — многоугольник, лежащий в основании). С другой стороны, произвольный цилиндр можно рассматривать как выродившуюся («сглаженную») призму с очень большим числом очень узких граней. Практически цилиндр неотличим от такой призмы. Все свойства призмы сохраняются и в цилиндре.

← Тело вращения Стереометрия ( Справочник ) Конус →
Рекомендуем для обучения:
Геометрия ( Справочник )

Цилиндры

Основные определения и свойства цилиндра

Сечения цилиндра

Объем цилиндра. Площадь боковой поверхности цилиндра. Площадь полной поверхности цилиндра

Основные определения и свойства цилиндра

Рассмотрим две паралллельные плоскости паралллельные плоскости α и β и произвольную окружность радиуса r с центром в точке O , лежащую в плоскости α (рис. 1).

Рис.1

Если из каждой точки окружности опустить перпендикуляр на плоскость β, то основания этих перпендикуляров образуют на плоскости β окружность радиуса r, центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).

Рис.2

Определение 1.

Отрезок перпендикуляра, опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра.

Совокупность всех образующих цилиндра называют цилиндрической поверхностью.

Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром.

Отрезок OO1 называют осью цилиндра .

Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра.

Расстояние между плоскостямиРасстояние между плоскостями α и β , называют высотой цилиндра.

Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра.

Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра. Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра.

Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.

Сечения цилиндра

Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

Рис.3

На рисунке 3 изображено одно из осевых сечений цилиндра – прямоугольник AA1B1B .

Замечание 4. Каждое осевое сечение цилиндра с радиусом r и высотой h является прямоугольником со сторонами 2r и h .

Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

Рис.4

Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса r .

Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

Для цилиндра с радиусом r и высотой h (рис. 5)

Рис.5

введем следующие обозначения

V объем цилиндра
Sбок площадь боковой поверхности цилиндра
Sполн площадь полной поверхности цилиндра
Sосн площадь основания цилиндра

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

Sосн = πr2,

V = Sосн h = πr2h,

Sбок= 2πrh,

Sполн = 2πr2 + 2πrh =
= 2π(r + h).

Замечание 7. Формула объема цилиндра V = πr2h может быть получена из формулы объема правильной n – угольной призмыформулы объема правильной n – угольной призмы

при помощи предельного перехода, когда число сторон правильной призмы n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Понятие цилиндра

На этом уроке мы вспомним понятие цилиндра. Дадим его определение. Рассмотрим, какими элементами обладает цилиндр.

Вокруг нас существует множество объектов, которые являются физическими моделями цилиндра, или проще говоря, имеют форму цилиндра.

Например, кружки и стаканы имеют форму цилиндра. Карандаши, шляпы, пуфики, барабан также имеют форму цилиндра.

Некоторые архитектурные сооружения.

Колонны храмов и соборов, выполненные в форме цилиндра, подчеркивают их гармонию и красоту.

Итак, перейдём к самому цилиндру. Рассмотрим произвольную плоскость и окружность с центром О радиуса , лежащую в этой плоскости. Через каждую точку окружности проведем прямую, перпендикулярную к плоскости .

Определение:

Поверхность, образованная этими прямыми, называется цилиндрической поверхностью, а сами прямые – образующими цилиндрической поверхности.

Прямая, проходящая через точку О перпендикулярно к плоскости , называется осью цилиндрической поверхности. Поскольку все образующие и ось перпендикулярны к плоскости , то они параллельны друг другу.

Рассмотрим теперь плоскость , параллельную плоскости . Отрезки образующих, заключённые между плоскостями и , параллельны и равны друг другу. По построению концы этих отрезков, расположенные в плоскости , заполняют окружность . Концы же, расположенные в плоскости , заполняют окружность с центром радиуса , где – точка пересечения плоскости с осью цилиндрической поверхности. Справедливость этого утверждения следует из того, что множество концов образующих, лежащих в плоскости , получается из окружности параллельным переносом на вектор . Параллельный перенос является движением и, значит, наложением, а при наложении любая фигура переходит в равную ей фигуру. Следовательно, при параллельном переносе на вектор . окружность перейдёт в равную ей окружность радиуса с центром в точке .

Определение:

Тело, ограниченное цилиндрической поверхностью и двумя равными кругами с границами и , называется цилиндром.

Можно ещё услышать и такое определение: прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями и , которые перпендикулярны образующим цилиндрической поверхности.

Назовём элементы цилиндра.

Круги называются основаниями цилиндра.

Отрезки образующих, заключенные между основаниями, — образующими цилиндра.

А образованная ими часть цилиндрической поверхности это есть боковая поверхность цилиндра.

Ось цилиндрической поверхности называется осью цилиндра.

Как уже отмечалось ранее, все образующие цилиндра параллельны и равны друг другу. Длина образующей называется высотой цилиндра, а радиус основания – радиусом цилиндра.

Цилиндр называется равносторонним, если его высота равна диаметру основания.

Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между основаниями цилиндра.

Цилиндр можно получить вращением прямоугольника вокруг одной из его сторон на . Итак, если взять некоторый прямоугольник и вращать его вокруг одной из сторон, например, вокруг стороны , то в результате получим тело, которое и называется цилиндром.

В этом случае основания цилиндра образуются вращением сторон и , а боковая поверхность цилиндра образуется вращении стороны .

Теперь рассмотрим сечения цилиндра различными плоскостями.

Если секущая плоскость проходит через ось цилиндра, то сечение представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра. Такое сечение называется осевым.

Определение:

Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось.

Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого – образующие цилиндра, а две другие – хорды оснований цилиндра.

Если секущая плоскость перпендикулярна к оси цилиндра, то сечение является кругом.

В самом деле, такая секущая плоскость отсекает от данного цилиндра тело, которое также является цилиндром. Его основаниями служат два круга, один из которых и есть рассматриваемое сечение.

Замечание. На практике очень часто встречаются предметы, которые имеют форму сложных цилиндров.

На экране, на первом рисунке вы видите цилиндр, каждое основание которого представляет собой фигуру, ограниченную частью параболы и отрезком. На втором рисунке изображен цилиндр, основаниями которого являются круги, но образующие цилиндра не перпендикулярны к плоскостям оснований, такой цилиндр называют еще наклонным цилиндром. Однако в дальнейшем мы будем рассматривать только прямые круговые цилиндры.

Задача: точка – середина образующей цилиндра, центрами оснований которого являются точки и . Верно ли, что ?

Решение: рассмотрим и .

Образующая перпендикулярна плоскостям, в которых лежат основания цилиндра. Следовательно, она перпендикулярна любой прямой лежащей в этих плоскостях. Прямые и являются радиусами цилиндра и лежат в плоскостях оснований. Значит, прямая и . Отсюда получаем, что и – прямоугольные.

Так как основаниями цилиндра являются равные круги, то , как радиусы.

Так как по условию задачи точка – середина образующей цилиндра, то отрезки . Значит, равны по двум катетам. Отсюда вытекает, что .

Ответ: .

Задача: точка – центр основания цилиндра. Отрезок – диаметр другого его основания. Вычислите площадь , если радиус цилиндра равен см, а его высота – см.

Решение: напомним, что площадь треугольника находится по формуле . Заметим, что высота цилиндра является и высотой нашего и равна . А основание треугольника есть диаметр цилиндра и равно оно двум радиусам, т.е. (см).

Подставим в формулу площади треугольника высоту и длину основания треугольника. Посчитаем. Получим, что площадь треугольника равна . Не забудем записать ответ.

Задача: радиус цилиндра см, а его высота – см. Вычислите площадь осевого сечения.

Решение: напомним, что осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра.

Высота цилиндра – это есть длина образующей . Следовательно, ширина осевого сечения равна . Длина сечения равна диаметру основания цилиндра. И значит, равна (см).

Теперь вычислим площадь осевого сечения. Она равна ().

Запишем ответ.

Итоги:

На этом уроке мы вспомнили понятие цилиндра. Узнали, что тело, ограниченное цилиндрической поверхностью и двумя кругами с границами и , называется цилиндром. Или прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями и , которые перпендикулярны образующим цилиндрической поверхности. Назвали элементы цилиндра. А также рассмотрели сечения цилиндра различными плоскостями.

Математика. 4 класс

Математика, 4 класс

Урок № 66. Цилиндр

Перечень вопросов, рассматриваемых в теме:

-цилиндр- объемная фигура

— элементы конуса

Глоссарий по теме:

Цилиндр- это объемная геометрическая фигура.

Основание – круг

Боковая поверхность-прямоугольник

Основная и дополнительная литература по теме урока:

1. Математика: 4 класс: учебник в 2 ч. Ч.2/ М. И. Моро, М. А. Бантова, Г. В. Бельтюкова.–М. Просвещение, 2016. с. 112-113.

Теоретический материал для самостоятельного изучения

Попробуйте отгадать, о какой геометрической фигуре говорится в загадке.

Присмотрись, стоит ведро

Сверху крышка, снизу дно.

Два кружка соединили,
И фигуру получили.

Сегодня на уроке мы познакомимся с новой геометрической фигурой, которая называется – цилиндр. Цилиндр в переводе с греческого «валик», «каток»

Давайте внимательно рассмотрим цилиндр и определим, из скольких частей он состоит.

У цилиндра 2 основания в виде круга и боковая поверхность.

Какой же формы боковая поверхность цилиндра? Чтобы ответить на этот вопрос, давайте попробуем получить модель цилиндра. Возьмите прямоугольный лист бумаги (рисунок 1).

рис.1

Сверните его в трубочку и склейте (рисунок 2). Получился предмет, похожий на трубу. Это мы получили боковую поверхность цилиндра.

рис.2

Если его с двух открытых сторон закрыть кругами — основаниями, то получиться модель

цилиндра. (рисунок 3)

рис.3

Теперь мы можем сделать вывод: какая фигура называется цилиндром?

Цилиндр — это объемная геометрическая фигура, состоящая из двух оснований в виде кругов и одной боковой поверхности в виде прямоугольника. Теперь вы сможете сами начертить развертку цилиндра. Это будет прямоугольник и 2 круга.

Предметы в форме цилиндра окружают нас, всюду: кухня, одежда, архитектура и играют важную роль в нашей жизни.

Цилиндром здесь зовусь, друзья.

На кухне встретите меня.

Я — термос, вкусный торт и свечка,

Кастрюля теплая на печке

Задания тренировочного модуля:

1. Укажите все геометрические фигуры, из которых составлена пирамида.

Правильный ответ.

Сверху вниз: пирамида, куб, цилиндр, параллелепипед.

2. Ребята хотят сделать игрушки в форме цилиндра. Они вырезали из цветной бумаги несколько фигур. Выберите фигуру, из которой можно сложить цилиндр.

Правильный ответ: В.

Чтобы выполнить задание, вспомните, какие части есть у цилиндра.

Цили́ндр (др.-греч. κύλινδρος — валик, каток) — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её. Цилиндрическая поверхность — поверхность, получаемая таким поступательным движением прямой (образующей) в пространстве, что выделенная точка образующей движется вдоль плоской кривой (направляющей). Часть поверхности цилиндра, ограниченная цилиндрической поверхностью называется боковой поверхностью цилиндра. Другая часть, ограниченная параллельными плоскостями, это основания цилиндра. Таким образом, граница основания будет по форме совпадать с направляющей. В большинстве случаев под цилиндром подразумевается прямой круговой цилиндр, у которого направляющая — окружность и основания перпендикулярны образующей. У такого цилиндра имеется ось симметрии. Другие виды цилиндра — эллиптический, гиперболический, параболический. Согласно определению, призма также является разновидностью цилиндра. Формулы: Площадь боковой поверхности Площадь боковой поверхности цилиндра равна длине образующей, умноженной на периметр сечения цилиндра плоскостью, перпендикулярной образующей. Площадь боковой поверхности прямого цилиндра вычисляется по его развёртке. Развёртка цилиндра представляет собой прямоугольник с высотой и длиной , равной периметру основания. Следовательно, площадь боковой поверхности цилиндра равна площади его развёртки и вычисляется по формуле: S = Ph. В частности, для прямого кругового цилиндра: P = 2ПR и S = 2ПRh. Объём цилиндра Для наклонного цилиндра существуют две формулы: — Объём равен длине образующей, умноженной на площадь сечения цилиндра плоскостью, перпендикулярной образующей. — Объём равен площади основания, умноженной на высоту (расстояние между плоскостями, в которых лежат основания): V = Sh = S *l *sinA где l — длина образующей, A — угол между образующей и плоскостью основания. Для прямого цилиндра h = l . — cечение цилиндра.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *