Свойства предмета

Свойство

Свойство — многозначный термин, который в зависимости от контекста может означать:

  • проявление в взаимодействии с субъектом присущей объекту качества.
  • отличительная особенность, характерная признак объекта.

Свойства философии

Свойство — философская категория, выражающая один из моментов выявления сущности вещи в отношениях с другими вещами; то, что характеризует ее сходство с другим предметам или отличие от них.

Свойство связано с качеством (см. качество и количество ). Каждая отдельная вещь имеет много свойств, единство которых выражает ее качество. Для того, чтобы предмет приобрел какой качества, он должен обладать определенными свойствами. Когда предмет теряет какую качество, он теряет также и соответствующие свойства, которые косвенно выражали его сущность в системе отношений. В свойствах предмета отражается внутренняя сущность не только предмету, но и системы связей и отношений, в которой этот предмет функционирует.

Формы свойств

Свойства бывают общие ( атрибут ), специфические, главные и неглавные, существенные и несущественные, необходимые и случайные, внешние и внутренние подобное.

В противоположность субъективному идеализму, который отождествляет свойства с ощущениями и таким образом отрицает ее объективный характер, диалектический материализм считает, что свойство объективно присущие вещам, а ощущение является субъективным отражением объективных свойств.

Свойства волокон

Общие понятия о волокне и нитях

Свойства волокон.

Думаю, что эта информация не будет лишней. Понятия действительно «общие».
Обратите внимание на физические, механические и гигиенические свойства волокон.
Пряжа — это очень тонкая, прочная, длинная нить которая получается посредством скручивания коротких волокон между собой.
Ничего не понятно? Давайте разбираться.
Значит, наша пряжа состоит из волокон? А что такое волокно?
Волокнами называют очень тонкие, но гибкие и прочные текстильные материалы, длина которых ограничена, но во много раз превышает поперечные размеры.
То есть, у волокон ограничена длина (короткие), но при этом они тонкие (поперечный размер) и гибкие.
Пряжа — это очень тонкая, прочная, длинная нить которая получается посредством скручивания коротких волокон между собой.

Свойства волокон. Какие бывают волокна.

ТАБЛИЦА КЛАССИФИКАЦИИ ТЕКСТИЛЬНЫХ ВОЛОКОН — Поможет Вам в этом разобраться.

ТАБЛИЦА КЛАССИФИКАЦИИ ТЕКСТИЛЬНЫХ ВОЛОКОН

По происхождению волокна делят на: натуральные и химические.
Натуральное — это волокно природного происхождения (растительного, животного и минерального).
Лён. Хлопок. Шёлк. Бамбук. Шерсть. Асбест. Обязательно почитайте о свойствах натуральных волокон. Это поможет вам работать с пряжей.
Химическое — это волокна, созданные искусственным путём с помощью физических и химических процессов.
Если химические волокна изготовлены из природных веществ (целлюлоза, белок), то их называют искусственными (вискозное, ацетатное и др.).
Если химические волокна получены из полимеров, то их называют синтетическими (капрон, лавсан и др.).
По химическому составу все волокна можно разделить на органические (хлопок, шерсть, капрон, лавсан и др.) и неорганические, или минеральные (асбестовые, стеклянные, металлические).
Акрил для машинного вязания рекламируют как заменитель шерсти. Я в корне с этим не согласна Химическое волокно не может заменить натуральное, потому что не имеет природных волшебных свойств.
Так как это тема очень большая, то лучше почитать книгу «ТАБЛИЦА КЛАССИФИКАЦИИ ТЕКСТИЛЬНЫХ ВОЛОКОН».
автор БАЖЕНОВ В.И. Издана 1971 год, 304 стр.
В книге дана краткая характеристика текстильных волокон, используемых в производстве трикотажных изделий.
Изложены технологические процессы изготовления пряжи и нитей и подготовка их к вязанию.
Приведена классификация трикотажных переплетений, подробно рассмотрены их строение, свойства, ассортимент и применение; освещена общая технология трикотажного производства.
Дана краткая характеристика швейных материалов (подкладочных, прокладочных, отделочных, фурнитуры, швейных ниток), используемых при изготовлении изделий из трикотажа.
Книга предназначена в качестве учебного пособия для учащихся техникумов легкой промышленности.

У всех волокон есть свойства

Гигиенические св-ва:

  1. Гигроскопичность — это свойство волокна (пряжи, ткани…) изменять свою влажность в зависимости от влажности и температуры окружающей среды.
  2. Теплозащитность — это способность сохранять тепло, выделяемое теплом человека.
  3. Теплопроводность – способность волокна передавать тепло от одной своей части к другой (сила теплового движения молекул).
  4. Воздухопроницаемость — свойство пропускать воздух и обеспечивать вентилируемость одежды.

Физические св-ва:

  1. Светостойкость — способность материала сохранять свой цвет под действием световых лучей.
  2. Термостойкость – стойкость к температурам.
  3. Химостойкость (щёлочь, кислоты).

Механические св-ва:

  1. Прочность.
  2. Растяжимость
  3. Трение и стойкость к истиранию.

Некоторые свойства волокон влияют и на технологический процесс переработки их в пряжу.
Например, от толщины волокон зависит толщина пряжи. Прочность пряжи из тонких волокон выше прочности пряжи такой же толщины, но из толстых волокон.
Пряжа из тонких синтетических волокон более склонна к пиллингу — образованию закатанных волокон на поверхности материала.
От толщины волокон и пряжи зависит толщина получаемых из них изделий, которая влияет на потребительские свойства.
Предположим у вас есть запас пряжи. Но этикетки затерялась. Как же выйти их этой ситуации и как узнать состав пряжи?
Ведь если нам не известен состав пряжи мы не применим наши знания о свойствах волокон и при неправильной влажной тепловой обработке (ВТО) можем потерять и пряжу и само изделие.
Чтобы этого не произошло читаем очень полезную и нужную статья о распознавание волокон по горению.
ОченьПростой способ определения волокон.
Удачи! И всего вам самого волшебного и сказочно-доброго.
Помните, что любая работа — это шанс поучиться.
Следите за новостями блога. Это легко сделать, оформив подписку на новости блога.

Периодический закон

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.

В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в «строки и столбцы» — периоды и группы.

Период — ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов. 4, 5, 6 — называются большими периодами, они состоят из двух рядов химических элементов.

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.

В группе радиус атома увеличивается с увеличением заряда атомных ядер — сверху вниз «↓». Чем больше период, тем больше электронных орбиталей вокруг атома, соответственно, и больше его радиус.

С уменьшением заряда атома в группе радиус атома уменьшается — снизу вверх «». Это связано с уменьшением количества электронных орбиталей вокруг атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.

Период, группа и электронная конфигурация

Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня. Так у бора на внешнем уровне расположены 3 электрона, у алюминия — тоже 3. Оба они в III группе.

Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует — там нужно считать электроны «вручную», располагая их на электронных орбиталях.

Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть то самое «сходство»:

  • B5 — 1s22s22p1
  • Al13 — 1s22s22p63s23p1

Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для бора, внешний уровень которого 2s22p1, алюминия — 3s23p1, галия — 4s24p1, индия — 5s25p1 и таллия — 6s26p1. За «n» мы принимаем номер периода.

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода — и вот быстро получена конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂

Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен, вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных — только «вручную».

Длина связи

Длина связи — расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую. Чем больше радиус атома, тем больше длина связи.

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические — усиливаются (слева направо «→»). В группе с увеличением заряда атома металлические свойства усиливаются, а неметаллические — ослабевают (сверху вниз «↓»).

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны — у него самые слабые неметаллические свойства. Сера обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера — самый сильный неметалл.

Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева — металлы.

Основные и кислотные свойства

Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные — возрастают. В группе с увеличением заряда атома основные свойства усиливаются, а кислотные — ослабевают.

Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются, вторые — убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF — самая слабая из этих кислот, а HI — самая сильная.

Восстановительные и окислительные свойства

Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные — усиливаются. В группе с увеличением заряда атома восстановительные свойства усиливаются, а окислительные — ослабевают.

Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные — с неметаллическими и кислотными. Так гораздо проще запомнить 😉

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Электроотрицательность — способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны). Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает к себе электроны и уходит в отрицательную степень окисления со знаком минус «-«.

Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева — это фтор.

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Понятию ЭО-ости «синонимичны» также понятия сродства к электрону — энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации — количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы — R2O3. Напишем высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3, Ga2O3.

На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.

ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в «-» отрицательную СО. Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы — 8.

Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко найдете формулы других ЛВС VI группы: серы — H2S, H2Se, H2Te, H2Po.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

У этого термина существуют и другие значения, см. Свойство (значения). Эта статья — об атрибуте предмета или объекта в философии, математике и логике. О необходимом условии принадлежности классу см. Свойство (логика).

Сво́йство (в философии, математике и логике) — атрибут предмета (объекта). Например, о красном предмете говорится, что он обладает свойством «красноты». Свойство можно рассматривать как форму предмета самого по себе, притом, что он может обладать и другими свойствами. Свойства, следовательно, подпадают под действие парадокса Рассела и парадокса Греллинга-Нельсона.

По другому определению, свойство — сторона проявления качества. При этом не всякое свойство предмета (объекта) должно рассматриваться при определении качества: свойство у предмета может иметься, но при сравнении предмета с другими оно может не быть отличительным или существенным.

Свойства объекта зависят от вида взаимодействия объекта и субъекта, например: если на яблоко смотреть — оно имеет цвет и форму; если его откусить — имеет твёрдость и вкус; если его взвешивать — имеет вес; если оценивать его габариты — имеет размеры, если трогать — имеет шероховатость. Объект является своими свойствами не только субъекту, но и другим объектам, то есть свойства могут проявляться и в ходе взаимодействия объектов друг с другом.

Совокупность некоторых частных свойств предмета может проявляться в некотором обобщённом свойстве предмета (поглощаться обобщённым свойством). Например, «краснота» яблока — обобщённое свойство яблока, а процентные доли содержания отдельных химических веществ в кожице яблока (характеризующие эту «красноту» яблока) — частные свойства яблока; «динамика» автомобиля — обобщённое свойство автомобиля, а мощность двигателя, снаряжённая масса, отношение главной передачи и др. (характеризующие эту «динамику» автомобиля) — частные свойства автомобиля.

Свойство отличается от логического понятия класса тем, что не связано с понятием экстенсиональности, а от философского понятия класса — тем, что свойство рассматривается в качестве отличного (отделённого) от предмета, который обладает им.

В логике

В логике, основанной на булевой алгебре, понятие «свойство» совпадает с понятием «высказывание».

В математике

В математике если дан любой элемент множества X, то определённое свойство p либо истинно, либо ложно, то есть понятие «свойство» совпадает с понятием «подмножество». На формальном языке: свойство p: X → {истинно, ложно}(то есть отображение, функция из Х в множество из двух элементов). Всякое свойство естественным образом задаёт подмножество {x: x обладает свойством p} и соответствующую индикаторную функцию (англ. indicator function). В некоторых разделах математики (например, теории искусственного интеллекта) применяется более сложное определение свойства как отношения эквивалентности на множестве Х. В этом случае p: X → {множество имен значений свойства}. Прообразы всех имен при этом отображении задают разбиение множества Х на непересекающиеся подмножества (значения свойства). Такое определение свойства позволяет единообразно рассматривать не только качественные, но и количественные характеристики объектов.

Применение

Свойства используются в науке для образования понятий. Свойства объектов и ситуаций широко применяются в теории решения задач, в процессах автоматизации производства, управления и поиска информации, при построении экспертных систем.

См. также

  • Признак (логика)
  • Параметр
  • Критерий (логика)
  • Понятие

В Викисловаре есть статья «свойство»

Литература

  • Уемов А. И., Вещи, свойства и отношения, М., 1963
  • Р. Бенерджи «Теория решения задач. Подход к созданию искусственного интеллекта» — М.: Мир, 1972 г.
  • При создании этой статьи использован материал «PlanetMath», которая лицензирована GFDL
  • Орилиа, Ф. и Суоэр, К. Свойства // Стэнфордская энциклопедия философии (версия осени 2014 года) / Ред. Эдвард Н. Залта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *