Стороны ромба

Ромб – это параллелограмм, у которого все стороны равны.

Ромб с прямыми углами называется квадратом и считается частным случаем ромба. Найти площадь ромба можно различными способами, используя все его элементы – стороны, диагонали, высоту. Классической формулой площади ромба считается расчет значения через высоту.

Пример расчета площади ромба по этой формуле очень прост. Необходимо только подставить данные и высчитать площадь.

Площадь ромба через диагонали


Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.

Формула площади ромба через диагонали представляет собой произведение его диагоналей, разделенное на 2.

Рассмотрим пример расчета площади ромба через диагонали. Пусть дан ромб с диагоналями
d1=5 см и d2=4. Найдем площадь.

Формула площади ромба через стороны подразумевает и применение других элементов. Если в ромб вписана окружность, то площадь фигуры можно просчитать по сторонам и ее радиусу:

Пример расчета площади ромба через стороны также весьма прост. Требуется только просчитать радиус вписанной окружности. Его можно вывести из теоремы Пифагора и по формуле площади прямоугольного треугольника.

Площади ромба через сторону и угол


Формула площади ромба через сторону и угол используется очень часто.

Рассмотрим пример расчета площади ромба через сторону и угол.

Задача: Дан ромб, диагонали которого равны d1=4 см,d2=6 см. Острый угол равен α = 30°. Найдите площадь фигуры через сторону и угол.
Для начала найдем сторону ромба. Используем для этого теорему Пифагора. Мы знаем, что в точке пересечения диагонали делятся пополам и образуют прямой угол. Следовательно:
Подставим значения:
Теперь мы знаем сторону и угол. Найдем площадь:

Геометрические фигуры. Ромб. Углы ромба. Как найти угол ромба.

Углы ромба, нахождение:

1. Сумма 4-х внутренних углов ромба равняется 360°, точно так же как и у всякого четырехугольника. Противоположные углы ромба имеют одинаковую величину, причем, всегда в 1-ой паре равных углов — углы острые, во второй — тупые. 2 угла, которые прилегают к 1-ной стороне в сумме составляют развернутый угол.

Ромбы с равным размером стороны могут внешне довольно сильно отличаться друг от друга. Это разница объясняется различной величиной внутренних углов. То есть, для определения угла ромба не хватит знать лишь длину его стороны.

2. Для вычисления величины углов ромба хватит знать длины диагоналей ромба. После построения диагоналей ромб разбивается на 4 треугольника. Диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.

Ромб — симметричная фигура, его диагонали есть в одно время и осями симметрии, вот почему каждый внутренний треугольник равен остальным. Острые углы треугольников, которые образованы диагоналями ромба, равняются ½ искомых углов ромба.

3. Тангенс острого угла прямоугольного треугольника соответствует отношению противолежащего катета к прилежащему. ½ любой из диагоналей ромба оказывается катетом прямоугольного треугольника.

Обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — А (острый) и В (тупой), теперь из соотношения сторон в прямоугольных треугольниках внутри ромба находим:

tg (A/2)=(d₂/2)/(d₁/2)=d₂/d₁, tg(B/2)=(d₁/2)/(d₂/2)=d₁/d₂.

4. Из формулы двойного угла tg (2α) = 2/(сtg α — tg α) находим тангенсы углов ромба:

tg A = 2/((d₁/d₂)-(d₂/d₁));

tg B =2/((d₂/d₁)-(d₁/d₂)).

По тригонометрическим таблицам находят углы, которые соответствуют полученным значениям тангенсов.

Острый угол ромба равен 60 градусам.

Когда острый угол ромба = 60°, значит, диагональ равняется стороне ромба и делит его на 2 одинаковых равносторонних треугольника.

Дано:

ABCD — ромб,

∠A=60º,

BD — диагональ.

Доказать: BD=AB,

∆ ABD и ∆ BCD — равносторонние,

∆ ABD = ∆ BCD.

Доказательство:

1) Изучим треугольник ABD.

Т.к. AB=AD (так как являются сторонами ромба), значит, ∆ ABD является равнобедренным треугольником с основанием BD.

Углы при основании равнобедренного треугольника:

∠ABD=∠ADB=(180º-∠A)/2=(180º-60º)/2=60º.

Так как каждый угол треугольника ABD равен 60 градусов, значит, ∆ ABD является равносторонним треугольником. Значит, BD=AB.

2) Треугольники ABD и BCD одинаковы по трем сторонам (AB=BC=CD=AD (как стороны ромба), BD=AB (из доказанного)).

То есть, ∆ BCD оказывается равносторонним треугольником.

Что и требовалось доказать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *