Разложить на множители

5 способов разложения многочлена на множители. Исчерпывающий гид (2020)

1. Вынесение общего множителя за скобки

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, , вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и , например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа , ведь все знают, что числа , и делятся на , а как быть, если вам досталось выражение посложнее:

?

Как узнать на что, например, делится число , неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Делится на Признак делимости числа на данный делитель
2 Оканчивается одной из цифр: 0, 2, 4, 6, 8
3 Сумма цифр делится на 3
5 Последняя цифра 5 или 0
7 Разность между числом десятков и удвоенной цифрой единиц делится на семь
9 Сумма цифр делится на 9
10 Последняя цифра – ноль
11 Разность между суммой цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на 11

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению , может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на , сумма цифр , и , из которых состоит число , равна , а делится на , значит и делится на .

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, , видишь общий множитель?

У всех членов этого выражения есть иксы – выносим, все делятся на – снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти «Формулы сокращенного умножения».

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы – весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

­­

ну и что с ним делать будешь? Вроде бы и на что-то делится и на , а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя, как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке – группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене ­­ ставим член – после члена – получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух «кучек», на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки , а из второй , получаем:

Но это же не разложение!

После разложения должно остаться только умножение, а пока у нас многочлен просто поделен на две части…

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения , которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему «Формулы сокращенного умножения») необходимо преобразовать имеющийся многочлен, представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока – учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо . Представим третий член как разность , получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!), имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!), представив , как , получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители .

Решение:

Еще пример:

Разложи на множители .

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему «Формулы сокращенного умножения»!

Пример:

Разложите на множители выражение .

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Разложите на множители многочлен .

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен .

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель , а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен .

Решение: Пример:

Разложите на множители многочлен .

Решение:

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен – многочлен вида , где – неизвестное, , , – некоторые числа, причем .

Значения переменной , которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена – это корни квадратного уравнения .

Если не помнишь, как находить эти корни, читай тему «Квадратные уравнения».

Теорема.

Если квадратное уравнение имеет корни , то его можно записать в виде: .

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение…

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения…

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

Pnx=anxn+an-1xn-1+…+a1x+a0=(x-s)·Qn-1(x)+Pn(s) , где Qn-1(x) является многочленом со степенью n-1.

Следствие из теоремы Безу

Разложение на множители квадратного трехчлена

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

x1=5-92·4=14×2=5+92·4=1

Отсюда получаем, что 4×2-5x+1=4x-14x-1.

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4x-14x-1=4×2-x-14x+14=4×2-5x+1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3×2-7x-11.

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3×2-7x-11=0.

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3×2-7x-11=0D=(-7)2-4·3·(-11)=181×1=7+D2·3=7+1816×2=7-D2·3=7-1816

Отсюда получаем, что 3×2-7x-11=3x-7+1816x-7-1816 .

Пример 3

Произвести разложение многочлена 2×2+1 на множители.

Решение

Теперь нужно решить квадратное уравнение 2×2+1=0 и найти его корни. Получим, что

2×2+1=0x2=-12×1=-12=12·ix2=-12=-12·i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2×2+1=2x-12·ix+12·i .

Пример 4

Произвести разложение квадратного трехчлена x2+13x+1.

Решение

Для начала необходимо решить квадратное уравнение вида x2+13x+1=0 и найти его корни.

x2+13x+1=0D=132-4·1·1=-359×1=-13+D2·1=-13+353·i2=-1+35·i6=-16+356·ix2=-13-D2·1=-13-353·i2=-1-35·i6=-16-356·i

Получив корни, запишем

x2+13x+1=x—16+356·ix—16-356·i==x+16-356·ix+16+356·i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x1 и понизить его степень при помощи деления на многочлена на 1 делением на (x-x1) . Полученный многочлен нуждается в нахождении корня x2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как Pn(x)=anxn+an-1xn-1+…+a1x.

Данный способ считается вынесением общего множителя за скобки.

Пример 5

Выполнить разложение многочлена третьей степени 4×3+8×2-x на множители.

Решение

Видим, что x1=0 — это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4×3+8×2-x=x(4×2+8x-1)

Переходим к нахождению корней квадратного трехчлена 4×2+8x-1 . Найдем дискриминант и корни:

D=82-4·4·(-1)=80×1=-8+D2·4=-1+52×2=-8-D2·4=-1-52

Тогда следует, что

4×3+8×2-x=x4x2+8x-1==4xx—1+52x—1-52==4xx+1-52x+1+52

Разложение на множители многочлена с рациональными корнями

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Слишком сложно? Не парься, мы поможем разобраться и подарим скидку 10% на любую работу Опиши задание Пример 6

Произвести разложение выражения f(x)=x4+3×3-x2-9x-18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа -18. Получим, что ±1,±2,±3,±6,±9,±18. Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Отсюда следует, что х=2 и х=-3 – это корни исходного многочлена, который можно представить как произведение вида:

f(x)=x4+3×3-x2-9x-18=(x-2)(x3+5×2+9x+9)==(x-2)(x+3)(x2+2x+3)

Переходим к разложению квадратного трехчлена вида x2+2x+3.

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f(x)=x4+3×3-x2-9x-18=(x-2)(x+3)(x2+2x+3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида Pn(x)=xn+an-1xn-1+…+a1x+a0, старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f(x)=2×3+19×2+41x+15.

Решение

Необходимо выполнить замену переменной y=2x, следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4. Получаем, что

4f(x)=23·x3+19·22·x2+82·2·x+60==y3+19y2+82y+60=g(y)

Когда получившаяся функция вида g(y)=y3+19y2+82y+60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

±1,±2,±3,±4,±5,±6,±10,±12,±15,±20,±30,±60

Перейдем к вычислению функции g(y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

Получаем, что у=-5 – это корень уравнения вида y3+19y2+82y+60, значит, x=y2=-52 — это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2×3+19×2+41x+15 на x+52 .

Решение

Запишем и получим:

Значит,

2×3+19×2+41x+15=x+52(2×2+14x+6)==2x+52(x2+7x+3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x2+7x+3. Приравниванием к нулю и находим дискриминант.

x2+7x+3=0D=72-4·1·3=37×1=-7+372×2=-7-372⇒x2+7x+3=x+72-372x+72+372

Отсюда следует, что

2×3+19×2+41x+15=2x+52×2+7x+3==2x+52x+72-372x+72+372

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Пример 9

Произвести разложение многочлена x4+4×3-x2-8x-2 на множители.

Решение

Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1, -1, 2 и -2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что

14+4·13-12-8·1-2=-6≠0(-1)4+4·(-1)3-(-1)2-8·(-1)-2=2≠024+4·23-22-8·2-2=26≠0(-2)4+4·(-2)3-(-2)2-8·(-2)-2=-6≠0

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

x4+4×3-x2-8x-2=x4+4×3-2×2+x2-8x-2==(x4-2×2)+(4×3-8x)+x2-2==x2(x2-2)+4x(x2-2)+x2-2==(x2-2)(x2+4x+1)

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

x2-2=0x2=2×1=2×2=-2⇒x2-2=x-2x+2×2+4x+1=0D=42-4·1·1=12×1=-4-D2·1=-2-3×2=-4-D2·1=-2-3⇒x2+4x+1=x+2-3x+2+3

Значит:

x4+4×3-x2-8x-2=x2-2×2+4x+1==x-2x+2x+2-3x+2+3

Замечание

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Пример 10

Произвести разложение на множители многочлен x4+3×3-x2-4x+2 .

Решение

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

x4+3×3-x2-4x+2==(x4+x3)+(2×3+2×2)+(-2×2-2x)-x2-2x+2==x2(x2+x)+2x(x2+x)-2(x2+x)-(x2+2x-2)==(x2+x)(x2+2x-2)-(x2+2x-2)=(x2+x-1)(x2+2x-2)

После разложения на множители получим, что

x4+3×3-x2-4x+2=x2+x-1×2+2x-2==x+1+3x+1-3x+12+52x+12-52

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x4+4×3+6×2+4x-2 на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3

На последовательность коэффициентов суммы в скобках указывает выражение x+14.

Значит, имеем x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3=x+14-3.

После применения разности квадратов, получим

x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3=x+14-3==x+14-3=x+12-3x+12+3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x4+4×3+6×2+4x-2=x4+4×3+6×2+4x+1-3=x+14-3==x+14-3=x+12-3x+12+3==x+1-34x+1+34×2+2x+1+3

Пример 12

Произвести разложение на множители x3+6×2+12x+6.

Решение

Займемся преобразованием выражения. Получаем, что

x3+6×2+12x+6=x3+3·2·x2+3·22·x+23-2=(x+2)3-2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x3+6×2+12x+6==(x+2)3-2==x+2-23x+22+23x+2+43==x+2-23×2+x2+23+4+223+43

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x6+5×3+6.

Решение

По условию видно, что необходимо произвести замену y=x3 . Получаем:

x6+5×3+6=y=x3=y2+5y+6

Корни полученного квадратного уравнения равны y=-2 и y=-3, тогда

x6+5×3+6=y=x3=y2+5y+6==y+2y+3=x3+2×3+3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

1.разложите на простые множители числа : 1)468 2)930 3)1176 4)2664 5)3625 6)5400

Разделить циферблат часов ровными линиями на шесть частей так что бы сумма чисел в каждой была одинаковой На первом озере было в 4 раза больше когда улетело с первого 3 утки а на второе озеро прилетело 12 уток и стало поровну сколько уток было на втором оз ере первоначально Помогите кому не трудно. Математика 1 курс ​ Раскройте скобки 8×(а-б+с)=​ Помогите плис!!! Самолёт пролетел 2/5 всего пути. До аэропорта назначение ему осталось пролететь 180км.Каково длина маршрута самолёта? И вот ещё. Реш ить уравнение. Можно плис решить только третье задание. Дам 20 баллов. Раскройте скобки -3×(3м-2к+1)= плиис решите очень надо ​ 1.Дифференцирование сложной и неявной функции двух переменных. 2. Решить уравнение y’=x2ex 3. Записать в тригонометрической форме СРООООЧНОООО ПЖ !!!!!! В системе координат дан треугольник с вершинами в точках K(4;5), N(−4;0) и R(1;−5). Нарисуй треугольник и симметричный ему тре угольник K1N1R1 относительно начала координатной системы, определи координаты вершин симметричного треугольника. В системе координат дан треугольник с вершинами в точках K(4;5), N(−4;0) и R(1;−5). Нарисуй треугольник и симметричный ему треугольник K1 N1 R1 относи тельно начала координатной системы, определи координаты вершин симметричного треугольника. 0,4 (х-3) +2, 5 =0, 5(4+х) Срочно дам 20 балів

Разложение на множители. Примеры.

Сергей Смирнов

Что такое разложение на множители? Это способ превращения неудобного и сложного примера в простой и симпатичный.) Оч-ч-чень мощный приём! Встречается на каждом шагу и в элементарной математике, и в высшей.

Подобные превращения на математическом языке называются тождественными преобразованиями выражений. Кто не в теме — прогуляйтесь по ссылке. Там совсем немного, просто и полезно.) Смысл любого тождественного преобразования — это запись выражения в другом виде с сохранением его сути.

Смысл разложения на множители предельно прост и понятен. Прямо из самого названия. Можно забыть (или не знать), что такое множитель, но то, что это слово происходит от слова «умножить» сообразить-то можно?) Разложить на множители означает: представить выражение в виде умножения чего-то на чего-то. Да простят мне математика и русский язык…) И всё.

Например, надо разложить число 12. Можно смело записать:

12=3·4

Вот мы и представили число 12 в виде умножения 3 на 4. Прошу заметить, что циферки справа (3 и 4) совсем другие, чем слева (1 и 2). Но мы прекрасно понимаем, что 12 и 3·4 одно и то же. Суть числа 12 от преобразования не изменилась.

А можно разложить 12 по-другому? Легко!

12=3·4=2·6=3·2·2=0,5·24=……..

Вариантов разложения — бесконечное количество.

Разложение чисел на множители — штука полезная. Очень помогает, например, при действиях с корнями. Но разложение на множители алгебраических выражений вещь не то, что полезная, она — необходимая! Чисто для примера:

Упростить:

Кто не умеете раскладывать выражение на множители, отдыхает в сторонке. Кто умеет — упрощает и получает:

Эффект потрясающий, правда?) Кстати, решение достаточно простое. Ниже сами увидите. Или, например, такое задание:

Решить уравнение:

х5 — x4= 0

Решается в уме, между прочим. С помощью разложения на множители. Ниже мы решим этот пример. Ответ: x1= 0; x2= 1.

Или, то же самое, но для старшеньких):

Решить уравнение:

Что, не подарок?) А вы читайте дальше, сами удивитесь, как всё просто. Ответ будет: x1= 1; x2= 10.

На этих примерах я показал основное назначение разложения на множители: упрощение дробных выражений и решение некоторых типов уравнений. Рекомендую запомнить практическое правило:

Если перед нами страшное дробное выражение, можно попробовать разложить на множители числитель и знаменатель. Очень часто дробь сокращается и упрощается.

Если перед нами уравнение, где справа — ноль, а слева — не пойми что, можно попробовать разложить левую часть на множители. Иногда помогает).

Основные способы разложения на множители.

Вот они, самые популярные способы:

1. Вынесение общего множителя за скобки.

2. Группировка.

3. Формулы сокращённого умножения.

4. Разложение квадратного трёхчлена.

Эти способы надо запомнить. Именно в таком порядке. Сложные примеры проверяются на все возможные способы разложения. И лучше уж проверять по порядочку, чтобы не запутаться… Вот по порядочку и начнём.)

1. Вынесение общего множителя за скобки.

Простой и надёжный способ. От него плохо не бывает! Бывает либо хорошо, либо никак.) Поэтому он и стоит первым. Разбираемся.

Все знают (я верю!)) правило:

a(b+c) = ab+ac

Или, в более общем виде:

a(b+c+d+…..) = ab+ac+ad+….

Все равенства работают как слева направо, так и наоборот, справа налево. Можно записать:

ab+ac = a(b+c)

Или:

ab+ac+ad+…. = a(b+c+d+…..)

Вот и вся суть вынесения общего множителя за скобки.

В левой части а — общий множитель для всех слагаемых. Умножается на всё, что есть). Справа это самое а находится уже за скобками.

Практическое применение способа рассмотрим на примерах. Сначала вариант простой, даже примитивный.) Но на этом варианте я отмечу (зелёным цветом) очень важные моменты для любого разложения на множители.

Разложить на множители:

ах+9х

Какой общий множитель сидит в обоих слагаемых? Икс, разумеется! Его и будем выносить за скобки. Делаем так. Сразу пишем икс за скобками:

ах+9х=х(

А в скобках пишем результат деления каждого слагаемого на этот самый икс. По порядочку:

Вот и всё. Конечно, так подробно расписывать не нужно, Это в уме делается. Но понимать, что к чему, желательно). Фиксируем в памяти:

Пишем общий множитель за скобками. В скобках записываем результаты деления всех слагаемых на этот самый общий множитель. По порядочку.

Вот мы и разложили выражение ах+9х на множители. Превратили его в умножение икса на (а+9). Замечу, что в исходном выражении тоже было умножение, даже два: а·х и 9·х. Но оно не было разложено на множители! Потому, что кроме умножения, в этом выражении было ещё и сложение, знак «+»! А в выражении х(а+9) кроме умножения ничего нет!

Как так!? — слышу возмущённый глас народа — А в скобках!?)

Да, внутри скобок есть сложение. Но фишка в том, что пока скобки не раскрыты, мы рассматриваем их как одну букву. И все действия со скобками делаем целиком, как с одной буквой. В этом смысле в выражении х(а+9) кроме умножения ничего нет. В этом вся суть разложения на множители.

Кстати, можно ли как-то проверить, всё ли правильно мы сделали? Запросто! Достаточно обратно умножить то, что вынесли (икс) на скобки и посмотреть — получилось ли исходное выражение? Если получилось, всё тип-топ!)

х(а+9)=ах+9х

Получилось.)

В этом примитивном примере проблем нет. Но если слагаемых несколько, да ещё с разными знаками… Короче, каждый третий ученик косячит). Посему:

При необходимости проверяем разложение на множители обратным умножением.

Двигаемся дальше и усложняем задачу:

Разложить на множители:

3ах+9х

Ищем общий множитель. Ну, с иксом всё ясно, его можно вынести. А есть ли ещё общий множитель? Да! Это тройка. Можно же записать выражение вот так:

3ах+3·3х

Здесь сразу видно, что общий множителем будет 3х. Вот его и выносим:

3ах+3·3х=3х(а+3)

Разложили.

А что будет, если вынести только х? Да ничего особенного:

3ах+9х=х(3а+9)

Это тоже будет разложение на множители. Но в этом увлекательном процессе принято раскладывать всё до упора, пока есть возможность. Здесь в скобках есть возможность вынести тройку. Получится:

3ах+9х=х(3а+9)=3х(а+3)

То же самое, только с одним лишним действием.) Запоминаем:

При вынесении общего множителя за скобки, стараемся вынести максимальный общий множитель.

Продолжаем развлечение?)

Разложить на множители выражение:

3ах+9х-8а-24

2. Группировка.

Собственно, группировку трудно назвать самостоятельным способом разложения на множители. Это, скорее, способ выкрутиться в сложном примере.) Надо сгруппировать слагаемые так, чтобы всё получилось. Это только на примере показать можно. Итак, перед нами выражение:

3ах+9х-8а-24

Видно, что какие-то общие буквы и числа имеются. Но… Общего множителя, чтобы был во всех слагаемых — нет. Не падаем духом и разбиваем выражение на кусочки. Группируем. Так, чтобы в каждом кусочке был общий множитель, было чего вынести. Как разбиваем? Да просто ставим скобки.

Напомню, что скобки можно ставить где угодно и как угодно. Лишь бы суть примера не менялась. Например, можно так:

3ах+9х-8а-24=(3ах+9х)-(8а+24)

Прошу обратить внимание на вторые скобки! Перед ними стоит знак минус, а 8а и 24 стали положительными! Если, для проверки, обратно раскрыть скобки, знаки поменяются, и мы получим исходное выражение. Т.е. суть выражения от скобок не изменилась.

Но если вы просто воткнули скобки, не учитывая смену знака, например, вот так:

3ах+9х-8а-24=(3ах+9х)-(8а-24)

это будет ошибкой. Справа — уже другое выражение. Раскройте скобки и всё станет видно. Дальше можно не решать, да…)

Но возвращаемся к разложению на множители. Смотрим на первые скобки (3ах+9х) и соображаем, можно ли чего вынести? Ну, этот пример мы выше решали, можно вынести 3х:

(3ах+9х)=3х(а+3)

Изучаем вторые скобки, там можно вынести восьмёрку:

(8а+24)=8(а+3)

Всё наше выражение получится:

(3ах+9х)-(8а+24)=3х(а+3)-8(а+3)

Разложили на множители? Нет. В результате разложения должно получиться только умножение, а у нас знак минус всё портит. Но… В обоих слагаемых есть общий множитель! Это (а+3). Я не зря говорил, что скобки целиком — это, как бы, одна буква. Значит, эти скобки можно вынести за скобки. Да, именно так и звучит.)

Делаем, как было рассказано выше. Пишем общий множитель (а+3), во вторых скобках записываем результаты деления слагаемых на (а+3):

3х(а+3)-8(а+3)=(а+3)(3х-8)

Всё! Справа кроме умножения ничего нет! Значит, разложение на множители завершено успешно!) Вот оно:

3ах+9х-8а-24=(а+3)(3х-8)

Повторим кратенько суть группировки.

Если в выражении нет общего множителя для всех слагаемых, разбиваем выражение скобками так, чтобы внутри скобок общий множитель был. Выносим его и смотрим, что получилось. Если повезло, и в скобках остались совершенно одинаковые выражения, выносим эти скобки за скобки.

Добавлю, что группировка — процесс творческий). Не всегда с первого раза получается. Ничего страшного. Иногда приходится менять слагаемые местами, рассматривать разные варианты группировки, пока не найдётся удачный. Главное здесь — не падать духом!)

Примеры.

Сейчас, обогатившись знаниями, можно и хитрые примеры порешать.) Была в начале урока тройка таких…

Упростить:

В сущности, этот пример мы уже решили. Незаметно для себя.) Напоминаю: если нам дана страшная дробь, пробуем разложить числитель и знаменатель на множители. Других вариантов упрощения просто нет.

Ну, знаменатель здесь не раскладывается, а числитель… Числитель мы уже разложили по ходу урока! Вот так:

3ах+9х-8а-24=(а+3)(3х-8)

Пишем результат разложения в числитель дроби:

По правилу сокращения дробей (основное свойство дроби), мы можем разделить (одновременно!) числитель и знаменатель на одно и то же число, или выражение. Дробь от этого не меняется. Вот и делим числитель и знаменатель на выражение (3х-8). И там и там получим единички. Окончательный результат упрощения:

Особо подчеркну: сокращение дроби возможно тогда и только тогда, когда в числителе и знаменателе кроме умножения выражений ничего нет. Именно потому превращение суммы (разности) в умножение так важно для упрощения. Конечно, если выражения разные, то и не сократится ничего. Бывет. Но разложение на множители даёт шанс. Этого шанса без разложения — просто нет.

Пример с уравнением:

Решить уравнение:

х5 — x4= 0

Выносим общий множитель х4 за скобки. Получаем:

х4(x-1)=0

Соображаем, что произведение множителей равно нулю тогда и только тогда, когда какой-нибудь из них равен нулю. Если сомневаетесь, найдите мне парочку ненулевых чисел, которые при умножении ноль дадут.) Вот и пишем, сначала первый множитель:

х4=0

При таком равенстве второй множитель нас не волнует. Любой может быть, всё равно в итоге ноль получится. А какое число в четвёртой степени ноль даст? Только ноль! И никакое другое… Стало быть:

х=0

С первым множителем разобрались, один корень нашли. Разбираемся со вторым множителем. Теперь нас не волнует уже первый множитель.):

x-1=0

x=1

Вот и нашли решение: x1= 0; x2= 1. Любой из этих корней подходит к нашему уравнению.

Очень важное замечание. Обратите внимание, мы решали уравнение по кусочкам! Каждый множитель приравнивали к нулю, не обращая внимания на остальные множители. Кстати, если в подобном уравнении будет не два множителя, как у нас, а три, пять, сколько угодно — решать будем точно так же. По кусочкам. Например:

(х-1)(х+5)(х-3)(х+2)=0

Здорово, правда?) Такое элегантное решение возможно, если левая часть уравнения разложена на множители. Намёк понятен?)

Ну и, последний пример, для старшеньких):

Решить уравнение:

Чем-то он похож на предыдущий, не находите?) Конечно. Самое время вспомнить, что в алгебре седьмого класса под буквами могут скрываться и синусы, и логарифмы, и всё, что угодно! Разложение на множители работает во всей математике.

Выносим общий множитель lg4x за скобки. Получаем:

lg4x(lgx-1)=0

Дальше всё, как в предыдущем примере:

lg4x=0

lgx=0

х=1

Это один корень. Разбираемся со вторым множителем.

lgx-1=0

lgx=1

х=10

Вот и окончательный ответ: x1= 1; x2= 10.

Надеюсь, вы осознали всю мощь разложения на множители в упрощении дробей и решении уравнений.)

В этом уроке мы познакомились с вынесением общего множителя и группировкой. Остаётся разобраться с формулами сокращённого умножения и квадратным трёхчленом.

Предыдущая страница: Числовые и алгебраические выражения. Преобразование выражений.

Следующая страница: Формулы сокращённого умножения.

Разложить многочлен на множители означает представить его в виде произведения двух или нескольких многочленов.

Примером разложения многочлена на множители является вынесение общего множителя за скобки, поскольку исходный многочлен обращается в произведение двух сомножителей, один из которых является одночленом, а другой многочленом.

Разложение многочлена на множители способом вынесения общего множителя за скобки

При вынесении общего множителя за скобки образуется произведение из двух сомножителей, один из которых является одночленом, а другой многочленом. Например:

6x + 3xy = 3x(2 + y)

В рамках изучения многочленов, одночлен принято считать многочленом, состоящим из одного члена. Поэтому, когда в многочлене выносится за скобки общий множитель, то говорят что исходный многочлен представлен в виде произведения многочленов.

В нашем примере многочлен 6x + 3xy был представлен в виде произведения многочленов 3x и (2 + y). По-другому говорят, что многочлен 6x + 3xy разложен на множители 3x и (2 + y)

Существуют также многочлены, в которых можно вынести за скобки такой общий множитель, который является двучленом. Например, рассмотрим многочлен 5a(x + y) + 7a(x + y). В этом многочлене общим множителем является двучлен (x + y). Вынесем его за скобки:

Разложение многочлена на множители способом группировки

Некоторые многочлены содержат группу членов, имеющих общий множитель. Такие группы можно заключать в скобки и далее выносить общий множитель за эти скобки. В результате получается разложение исходного многочлена на множители, которое называют разложением на множители способом группировки.

Рассмотрим следующий многочлен:

ax + ay + 3x + 3y

Члены ax и ay имеют общий множитель a. Выпишем эти члены и заключим их в скобки:

(ax + ay)

Далее в многочлене ax + ay + 3x + 3y члены 3x и 3y имеют общий множитель 3. Выпишем эти члены и тоже заключим их в скобки:

(3x + 3y)

Теперь соединим выражения (ax + ay) и (3x + 3y) знаком «плюс»

(ax + ay) + (3x + 3y)

В многочлене (ax + ay) вынесем за скобки общий множитель a, а в многочлене (3x + 3y) вынесем за скобки общий множитель 3. Делать это нужно в исходном выражении:

Далее замечаем, что двучлен (x + y) является общим множителем. Вынесем его за скобки. Продолжаем решение в исходном примере. В результате получим:

Запишем решение покороче, не расписывая подробно, как каждый член был разделен на общий множитель. Тогда решение получится более компактным:

Чтобы проверить правильно ли мы разложили многочлен на множители, выполним умножение (x + y)(a + 3). Если мы всё сделали правильно, то получим многочлен ax + ay + 3x + 3y

(x + y)(a + 3) = ax + ay + 3x + 3y

Пример 2. Разложить многочлен 9x + ax − 9y − ay на множители способом группировки.

Члены 9x и −9y имеют общий множитель 9. А члены ax и −ay имеют общий множитель a. Сгруппируем их с помощью скобок, и объединим с помощью знака «плюс»

(9x − 9y) + (ax − ay)

В первой группе (9x − 9y) вынесем за скобки общий множитель 9. Во второй группе (ax − ay) вынесем за скобки за скобки общий множитель a

(9x − 9y) + (ax − ay) = 9(x − y) + a(x − y)

Далее вынесем за скобки двучлен (x − y)

(9x − 9y) + (ax − ay) = 9(x − y) + a(x − y) = (x − y)(9 + a)

Пример 3. Разложить многочлен ab − 3b + b2 − 3a на множители способом группировки.

Сгруппируем первый член ab с четвёртым членом −3a. А второй член −3b сгруппируем с третьим членом b2. Не забываем, что объединять группы нужно с помощью знака «плюс»

(ab − 3a) + (−3b + b2)

В первой группе вынесем за скобки общий множитель a, во второй группе — общий множитель b

(ab − 3a) + (−3b + b2) = a(b − 3) + b(−3 + b)

Во втором произведении b(−3 + b) в сомножителе (−3 + b) изменим порядок следования членов. Тогда получим b(b − 3)

(ab − 3a) + (−3b + b2) = a(b − 3) + b(b − 3)

Теперь вынесем за скобки общий множитель (b − 3)

(ab − 3a) + (−3b + b2) = a(b − 3) + b(b − 3) = (b − 3)(a + b)

Пример 4. Разложить многочлен x2y + x + xy2 + y + 2xy + 2 на множители способом группировки.

Сгруппируем первый член многочлена со вторым, третий с четвёртым, пятый с шестым:

В первой группе вынесем за скобки общий множитель x, во второй группе — общий множитель y, в третьей группе — общий множитель 2

Далее замечаем, что многочлен (xy + 1) является общим множителем. Вынесем его за скобки:

Разложение многочлена на множители по формуле квадрата суммы двух выражений

Формулы сокращённого умножения, которые мы рассматривали в прошлом уроке, можно применять для разложения многочленов на множители.

Вспомним, как выглядит формула квадрата суммы двух выражений:

(a + b)2 = a2 + 2ab + b2

Поменяем местами левую и правую часть, получим:

a2 + 2ab + b2 = (a + b)2

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b)2 представляет собой перемножение двух сомножителей, каждый из которых равен многочлену (a + b).

a2 + 2ab + b2 = (a + b)(a + b)

Пример 1. Разложить на множители многочлен 4×2 + 12xy + 9y2

Чтобы воспользоваться формулой a2 + 2ab + b2 = (a + b)2, нужно узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член многочлена 4×2 + 12xy + 9y2 является результатом возведения в квадрат одночлена 2x, поскольку (2x)2 = 4×2. Третий член 9y2 является результатом возведения в квадрат одночлена 3y, поскольку (3y)2 = 9y2, а член 12xy это есть удвоенное произведение членов 2x и 3y, то есть 2 × 2x × 3y = 12xy.

Очевидно, что переменная a в данном случае равна 2x, а переменная b равна 3y

a = 2x
b = 3y

Тогда можно сделать вывод, что когда-то выражение 4×2 + 12xy + 9y2 выглядело в виде квадрата суммы (2x + 3y)2, но в результате применения формулы квадрата суммы оно обратилось в многочлен 4×2 + 12xy + 9y2. Наша задача — вернуть ему былую форму, то есть представить в виде (2x + 3y)2

4×2 + 12xy + 9y2 = (2x + 3y)2

А поскольку (2x + 3y)2 это произведение двух сомножителей, каждый из которых равен многочлену (2x + 3y), то исходный многочлен 4×2 + 12xy + 9y2 можно представить в виде разложения на множители (2x + 3y) и (2x + 3y)

4×2 + 12xy + 9y2 = (2x + 3y)(2x + 3y)

Полностью решение можно записать так:

4×2 + 12xy + 9y2 = (2x)2 + 2 × 2x × 3y + (3y)2 = (2x + 3y)2 = (2x + 3y)(2x + 3y)

Пример 2. Разложить на множители многочлен x2 + 12x + 36

Первый член данного многочлена является результатом возведения в квадрат одночлена x, поскольку x2 = x2, третий член — результатом возведения в квадрат числа 6, поскольку 62 = 36, а член 12x это удвоенное произведение членов x и 6, поскольку 2 × x × 6 = 12x.

Воспользуемся формулой a2 + 2ab + b2 = (a + b)2. Роль переменной a играет одночлен x, а роль переменной b играет одночлен 6. Отсюда:

x2 + 12x + 36 = (x + 6)2

x2 + 12x + 36 = (x + 6)(x + 6)

Разложение многочлена на множители по формуле квадрата разности двух выражений

Как и по формуле квадрата суммы двух выражений, многочлен можно разложить на множители по формуле квадрата разности двух выражений.

Формула квадрата разности двух выражений выглядит так:

(a − b)2 = a2 − 2ab + b2

Если в этой формуле поменять местами левую и правую часть, то получим:

a2 − 2ab + b2 = (a − b)2

Поскольку правая часть это произведение двух сомножителей, каждый из которых равен (a − b), то многочлен вида a2 − 2ab + b2 можно разложить на множители (a − b) и (a − b).

a2 − 2ab + b2 = (a − b)(a − b)

Пример 1. Разложить на множители многочлен 9×2 − 12xy + 4y2

Чтобы воспользоваться формулой a2 − 2ab + b2 = (a − b)2, нужно узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член данного многочлена является результатом возведения в квадрат одночлена 3x, поскольку (3x)2 = 9×2. Третий член 4y2 является результатом возведения в квадрат одночлена 2y, поскольку (2y)2 = 4y2, а член 12xy это удвоенное произведение членов 3x и 2y, то есть 2 × 3x × 2y = 12xy.

Очевидно, что переменная a в данном случае равна 3x, а переменная b равна 2y

a = 3x
b = 2y

Тогда можно сделать вывод, что когда-то выражение 9×2 − 12xy + 4y2 выглядело в виде квадрата разности (3x − 2y)2, но в результате применения формулы квадрата разности оно обратилось в многочлен 9×2 − 12xy + 4y2. Наша задача — вернуть ему былую форму, то есть представить в виде (3x − 2y)2

9×2 − 12xy + 4y2 = (3x − 2y)2

А поскольку (3x − 2y)2 это произведение двух сомножителей, каждый из которых равен многочлену (3x − 2y), то исходный многочлен 9×2 − 12xy + 4y2 можно представить в виде разложения на множители (3x − 2y) и (3x − 2y)

9×2 − 12xy + 4y2 = (3x − 2y)(3x − 2y)

Полностью решение можно записать так:

9×2 − 12xy + 4y2 = (3x)2 − 2 × 3x × 2y + (2y)2 = (3x − 2y)2 = (3x − 2y)(3x − 2y)

Пример 2. Разложить на множители многочлен x2 − 4x + 4

Воспользуемся формулой квадрата разности двух выражений:

x2 − 4x + 4 = x2 − 2 × x × 2 + 22 = (x − 2)2 = (x − 2)(x − 2)

Разложение многочлена на множители по формуле куба суммы двух выражений

Вспомним, как выглядит формула куба суммы двух выражений:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

Поменяем местами левую и правую часть, получим:

a3 + 3a2b + 3ab2 + b3 = (a + b)3

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b)3 представляет собой перемножение трёх сомножителей, каждый из которых равен многочлену (a + b).

a3 + 3a2b + 3ab2 + b3 = (a + b)(a + b)(a + b)

Пример 1. Разложить на множители многочлен m3 + 6m2n + 12mn2 + 8n3

Прежде чем применять формулу куба суммы, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб суммы двух выражений.

Чтобы убедиться, что исходное выражение является кубом суммы двух выражений, следует узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член данного многочлена является результатом возведения в куб одночлена m

m3 = m3

Последний член 8n3 является результатом возведения в куб одночлена 2n

(2n)3 = 8n3

Второй член 6m2n является утроенным произведением квадрата первого выражения m и последнего 2n

3 × m2 × 2n = 6m2n

Третий член 12mn2 является утроенным произведением первого выражения m и квадрата последнего выражения 2n

3 × m × (2n)2 = 3 × m × 4n2 = 12mn2

То есть исходный многочлен m3 + 6m2n + 12mn2 + 8n3 по всем параметрам соответствует кубу суммы двух выражений. Переменной a в данном многочлене соответствует m, а переменной b соответствует 2n

a = m
b = 2n

Тогда можно сделать вывод, что когда-то выражение m3 + 6m2n + 12mn2 + 8n3 выглядело в виде куба суммы (m + 2n)3, но в результате применения формулы куба суммы оно обратилось в многочлен m3 + 6m2n + 12mn2 + 8n3. Наша задача — вернуть ему былую форму, то есть представить в виде (m + 2n)3

m3 + 6m2n + 12mn2 + 8n3 = (m + 2n)3

m3 + 6m2n + 12mn2 + 8n3 = (m + 2n)(m + 2n)(m + 2n)

Пример 2. Разложить на множители многочлен 125×3 + 75×2 + 15x + 1

Первый член данного многочлена является результатом возведения в куб одночлена 5x

(5x)3 = 125×3

Последний член 1 является результатом возведения в куб одночлена 1

13 = 1

Второй член 75×2 является утроенным произведением квадрата первого выражения 5x и последнего 1

3 × (5x)2 × 1 = 3 × 25×2 = 75×2

Третий член 15x является утроенным произведением первого выражения 5x и квадрата второго выражения 1

3 × 5x × 12 = 15x

Воспользуемся формулой a3 + 3a2b + 3ab2 + b3 = (a + b)3. Роль переменной a играет одночлен 5x, а роль переменной b играет одночлен 1

a = 5x
b = 1

Поэтому,

125×3 + 75×2 + 15x + 1 = (5x + 1)3

125×3 + 75×2 + 15x + 1 = (5x + 1)(5x + 1)(5x + 1)

Разложение многочлена на множители по формуле куба разности двух выражений

Как и по формуле куба суммы двух выражений, многочлен можно разложить на множители по формуле куба разности двух выражений.

Вспомним, как выглядит формула куба разности двух выражений:

(a − b)3 = a3 − 3a2b + 3ab2 − b3

Если в этой формуле поменять местами левую и правую часть, то получим:

a3 − 3a2b + 3ab2 − b3 = (a − b)3

Поскольку правая часть это произведение трёх сомножителей, каждый из которых равен (a − b), то многочлен вида a3 − 3a2b + 3ab2 − b3 можно разложить на множители (a − b), (a − b) и (a − b).

a3 − 3a2b + 3ab2 − b3 = (a − b)(a − b)(a − b)

Пример 1. Разложить на множители многочлен 64 − 96x + 48×2 − 8×3

Прежде чем применять формулу куба разности, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб разности двух выражений.

Чтобы убедиться, что исходное выражение является кубом разности двух выражений, следует узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член данного многочлена является результатом возведения в куб одночлена 4

43 = 64

Последний член 8×3 является результатом возведения в куб одночлена 2x

(2x)3 = 8×3

Второй член 96x является утроенным произведением квадрата первого выражения 4 и последнего 2x

3 × 42 × 2x = 3 × 16 × 2x = 96x

Третий член 48×2 является утроенным произведением первого выражения 4 и квадрата второго выражения 2x

3 × 4 × (2x)2 = 3 × 4 × 4×2 = 48×2

Видим, что исходный многочлен 64 − 96x + 48×2 − 8×3 по всем параметрам соответствует кубу разности двух выражений. Переменной a в данном многочлене соответствует 4, а переменной b соответствует 2x

a = 4
b = 2x

Тогда можно сделать вывод, что когда-то выражение 64 − 96x + 48×2 − 8×3 выглядело в виде куба разности (4 − 2x)3, но в результате применения формулы куба разности оно обратилось в многочлен 64 − 96x + 48×2 − 8×3. Наша задача — вернуть ему былую форму, то есть представить в виде (4 − 2x)3

64 − 96x + 48×2 − 8×3 = (4 − 2x)3

А поскольку (4 − 2x)3 это произведение трёх сомножителей, каждый из которых равен (4 − 2x), то исходный многочлен 64 − 96x + 48×2 − 8×3 можно представить в виде разложения на множители (4 − 2x), (4 − 2x) и (4 − 2x)

64 − 96x + 48×2 − 8×3 = (4 − 2x)(4 − 2x)(4 − 2x)

Пример 2. Разложить на множители многочлен 27 − 135x + 225×2 − 125×3

Первый член данного многочлена является результатом возведения в куб одночлена 3

33 = 27

Последний член 125 является результатом возведения в куб одночлена 5x

(5x)3 = 125×3

Второй член 135x является утроенным произведением квадрата первого выражения 3 и последнего 5x

3 × 32 × 5x = 3 × 9 × 5x = 135x

Третий член 225×2 является утроенным произведением первого выражения 3 и квадрата второго выражения 5x

3 × 3 × (5x)2 = 3 × 3 × 25×2 = 225×2

Воспользуемся формулой a3 − 3a2b + 3ab2 − b3 = (a − b)3. Роль переменной a играет одночлен 3, а роль переменной b играет одночлен 5x

a = 3
b = 5x

Поэтому,

27 − 135x + 225×2 − 125×3 = (3 − 5x)3

А поскольку (3 − 5x)3 это произведение трёх сомножителей, каждый из которых равен многочлену (3 − 5x), то исходный многочлен 27 − 135x + 225×2 − 125×3 можно представить в виде разложения на множители (3 − 5x), (3 − 5x) и (3 − 5x)

125×3 + 75×2 + 15x + 1 = (3 − 5x)(3 − 5x)(3 − 5x)

Разложение многочлена на множители по формуле разности квадратов двух выражений

Вспомним, как выглядит формула умножения разности двух выражений на их сумму:

(a − b)(a + b) = a2 − b2

Если в этой формуле поменять местами левую и правую часть, то получим:

a2 − b2 = (a − b)(a + b)

Эту формулу называют разностью квадратов. Она позволяет разложить выражение вида a2 − b2 на множители (a − b) и (a + b).

Пример 1. Разложить на множители многочлен 16×2 − 25y2

Чтобы воспользоваться формулой a2 − b2 = (a − b)(a + b), следует узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член 16×2 является результатом возведения в квадрат одночлена 4x

(4x)2 = 16×2

Второй член 25y2 является результатом возведения в квадрат одночлена 5y

(5y)2 = 25y2

То есть в данном случае переменной a соответствует одночлен 4x, а переменной b соответствует одночлен 5y

a = 4x
b = 5y

Теперь можно воспользоваться формулой a2 − b2 = (a − b)(a + b). Подставим в неё наши значения a и b

(4x)2 − (5y)2 = (4x − 5y)(4x + 5y)

Полностью решение можно записать так:

16×2 − 25y2 = (4x)2 − (5y)2 = (4x − 5y)(4x + 5y)

Для проверки можно выполнить умножение (4x − 5y)(4x + 5y). Если мы всё сделали правильно, то должны получить 16×2 − 25y2

(4x − 5y)(4x + 5y) = 16×2 − 20xy + 20xy − 25y2 = 16×2 − 25y2

Пример 2. Разложить на множители многочлен x2 − y2

В данном случае переменной a соответствует x, а переменной b соответствует y. Тогда по формуле квадрата разности имеем:

x2 − y2 = (x − y)(x + y)

Случай как в данном примере является наиболее простым, поскольку здесь сразу видно чему равно a и чему равно b.

Чаще всего члены, из которых состоит исходная разность, являются результатами возведения во вторую степень каких-нибудь одночленов. Чтобы узнать чему в таком случае равны a и b, нужно как в первом примере представить члены исходной разности в виде одночленов возведённых в квадрат.

Например, чтобы разложить многочлен 4×4 − 9y6 на множители, нужно исходные члены представить в виде одночленов возведённых в квадрат. Первый член в виде одночлена, возведенного в квадрат, можно записать как (2×2)2, поскольку вычисление этого выражение даёт в результате 4×4

(2×2)2 = 4×4

А член 9y6 в виде одночлена, возведенного в квадрат, можно записать как (3y3)2, поскольку вычисление этого выражение даёт в результате 9y6

(3y3)2 = 9y6

Теперь мы знаем, чему равны a и b. Они равны 2×2 и 3y3 соответственно. Подставим их в формулу a2 − b2 = (a − b)(a + b)

(2×2)2 − (3y3)2 = (2×2 − 3y3)(2×2 + 3y3)

Полностью решение можно записать так:

4×4 − 9y6 = (2×2)2 − (3y3)2 = (2×2 − 3y3)(2×2 + 3y3)

Несмотря на простоту разложения по формуле разности квадратов, частые ошибки приходятся именно на эти задачи. Чтобы убедиться, что задача решена правильно, не мешает выполнить умножение в получившемся разложении. Если задача решена правильно, то должен получиться изначальный многочлен.

Проверим умножением данный пример. У нас должен получиться многочлен 4×4 − 9y6

(2×2 − 3y3)(2×2 + 3y3) = 2×2(2×2 + 3y3) − 3y3(2×2 + 3y3)
= 4×4 + 6x2y3 − 6x2y3 − 9y6 = 4×4 − 9y6

Пример 4. Разложить на множители многочлен 81 − 64

Представим члены исходной разности в виде одночленов возведенных в квадрат. Далее воспользуемся формулой разности квадратов:

81 − 64 = 92 − 82 = (9 − 8)(9 + 8)

Разложение многочлена на множители по формуле сумме кубов двух выражений

Мы помним, что произведение суммы двух выражений и неполного квадрата их разности равно сумме кубов этих выражений:

(a + b)(a2 − ab + b2) = a3 + b3

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую суммой кубов двух выражений:

a3 + b3 = (a + b)(a2 − ab + b2)

Эта формула позволяет разложить выражение вида a3 + b3 на множители (a + b) и (a2 − ab + b2).

Пример 1. Разложить на множители многочлен 27×3 + 64y3

Представим члены 27×3 и 64y3 в виде одночленов, возведённых в куб

27×3 + 64y3 = (3x)3 + (4y)3

Теперь воспользуемся формулой суммы кубов. Переменная a в данном случае равна 3x, переменная b равна 4y

27×3 + 64y3 = (3x)3 + (4y)3 = (3x + 4y)((3x)2 − 3x × 4y + (4y)2) =
(3x + 4y)(9×2 − 12xy + 16y2)

Пример 2. Разложить на множители многочлен 125 + 8

Представим члены 125 и 8 в виде одночленов, возведённых в куб:

125 + 8 = 53 + 23

Далее воспользуемся формулой суммы кубов:

125 + 8 = 53 + 23 = (5 + 2)(25 − 10 + 4)

Разложение многочлена на множители по формуле разности кубов двух выражений

Произведение разности двух выражений и неполного квадрата их суммы равно разности кубов этих выражений:

(a − b)(a2 + ab + b2) = a3 − b3

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую разностью кубов двух выражений:

a3 − b3 = (a − b)(a2 + ab + b2)

Эта формула позволяет разложить выражение вида a3 − b3 на множители (a − b) и (a2 + ab + b2).

Пример 1. Разложить на множители многочлен 64×3 − 27y3

Представим члены 64×3 и 27y3 в виде одночленов, возведённых в куб:

64×3 − 27y3 = (4x)3 − (3y)3

Теперь воспользуемся формулой разности кубов. Переменная a в данном случае равна 4x, переменная b равна 3y

64×3 − 27y3 = (4x)3 − (3y)3 = (4x − 3y)((4x)2 + 4x × 3y + (3y)2) =
(4x − 3y)(16×2 + 12xy + 9y2)

Пример 2. Разложить на множители многочлен 64 − 27

Представим члены 64 и 27 в виде одночленов, возведённых в куб:

64 − 27 = 43 − 33 = (4 − 3)(16 + 12 + 9)

Пример 3. Разложить на множители многочлен 125×3 − 1

Представим члены 125×3 и 1 в виде одночленов, возведённых в куб:

125×3 − 1 = (5x)3 − 13

Теперь воспользуемся формулой разности кубов. Переменная a в данном случае равна 5x, переменная b равна 1

125×3 − 1 = (5x)3 − 13 = (5x − 1)((5x)2 + 5x × 1 + 12) =
(5x − 1)(25×2 + 5x + 1)

Разложение многочлена на множители различными способами

К некоторым многочленам можно применять различные способы разложения на множители. Например, к одному многочлену можно применить способ вынесения общего за скобки, а затем воспользоваться одной из формул сокращённого умножения.

Пример 1. Разложить на множители многочлен ax2 − ay2

В данном многочлене содержится общий множитель a. Вынесем его за скобки:

ax2 − ay2 = a(x2 − y2)

При этом в скобках образовался многочлен, который является разностью квадратов. Применив формулу разности квадратов. Тогда получим:

ax2 − ay2 = a(x2 − y2) = a(x − y)(x + y)

Пример 2. Разложить на множители многочлен 3×2 + 6xy + 3y2

Вынесем за скобки общий множитель 3

3×2 + 6xy + 3y2 = 3(x2 + 2xy + y2)

В скобках образовался многочлен, который является квадратом суммы двух выражений, а именно выражений x и y. Тогда этот квадрат суммы можно представить как (x + y)2 и далее записать в виде двух сомножителей, каждый из которых равен (x + y)

3×2 + 6xy + 3y2 = 3(x2 + 2xy + y2) = 3(x + y)2 = 3(x + y)(x + y)

Задания для самостоятельного решения

Задание 1. Следующий многочлен разложите на множители способом группировки: Решение: Задание 2. Следующий многочлен разложите на множители способом группировки: Решение: Задание 3. Следующий многочлен разложите на множители способом группировки: Решение: Задание 4. Следующий многочлен разложите на множители способом группировки: Решение: Задание 5. Следующий многочлен разложите на множители способом группировки: Решение: Задание 6. Следующий многочлен разложите на множители способом группировки: Решение: Задание 7. Разложите на множители многочлен: x2 + 12x + 36 Решение: x2 + 12x + 36 = x2 + 2 × x × 6 + 62 = (x + 6)2 = (x + 6)(x + 6) Задание 8. Разложите на множители многочлен: 8xy + y2 + 16×2 Решение: 8xy + y2 + 16×2 = 16×2 + 8xy + y2 = (4x)2 + 2 × 4x × y + y2 = (4x + y)2 = (4x + y)(4x + y) Задание 9. Разложите на множители многочлен: Решение: Задание 10. Разложите на множители многочлен: Решение: Задание 11. Разложите на множители многочлен: Решение: Задание 12. Разложите на множители многочлен: Решение: Задание 13. Разложите на множители многочлен: Решение: Задание 14. Разложите на множители многочлен: Решение: Задание 15. Разложите на множители многочлен: Решение: Задание 16. Разложите на множители многочлен: Решение: Задание 17. Разложите на множители многочлен: Решение: Задание 18. Разложите на множители многочлен: Решение: Задание 19. Разложите на множители многочлен: Решение: Задание 20. Разложите на множители многочлен: Решение: Задание 21. Разложите на множители многочлен: Решение: Задание 22. Разложите на множители многочлен: Решение: Задание 23. Разложите на множители многочлен: Решение: Задание 24. Разложите на множители многочлен: Решение: Задание 25. Разложите на множители многочлен: Решение: Задание 26. Разложите на множители многочлен: Решение: Задание 27. Разложите на множители многочлен: Решение: Задание 28. Разложите на множители многочлен: Решение: Задание 29. Разложите на множители многочлен: Решение: Задание 30. Разложите на множители многочлен: Решение: Задание 31. Разложите на множители многочлен: Решение: Задание 32. Разложите на множители многочлен: Решение: Задание 33. Разложите на множители многочлен: Решение: Задание 34. Разложите на множители многочлен: Решение: Задание 35. Разложите на множители многочлен: Решение: Задание 36. Разложите на множители многочлен: Решение: Задание 37. Разложите на множители многочлен: Решение: Задание 38. Разложите на множители многочлен: Решение: Задание 39. Разложите на множители многочлен: Решение: Задание 40. Разложите на множители многочлен: Решение: Задание 41. Разложите на множители многочлен: Решение: Задание 42. Разложите на множители многочлен: Решение: Задание 43. Разложите на множители многочлен: Решение: Задание 44. Разложите на множители многочлен: Решение: Задание 45. Разложите на множители многочлен: Решение: Задание 46. Разложите на множители многочлен: Решение: Задание 47. Разложите на множители многочлен: Решение: Задание 48. Разложите на множители многочлен: Решение: Задание 49. Разложите на множители многочлен: Решение: Задание 50. Разложите на множители многочлен: Решение: Задание 51. В следующем выражении вынесите за скобки общий множитель 2a, затем выражение в скобках разложите на множители: Решение: Задание 52. В следующем выражении вынесите за скобки общий множитель 4, затем выражение в скобках разложите на множители: Решение: Задание 53. В следующем выражении вынесите за скобки общий множитель 2x2y2, затем выражение в скобках разложите на множители: Решение: Задание 54. В следующем выражении вынесите за скобки общий множитель 4x3y3, затем выражение в скобках разложите на множители: Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *