Площадь боковой поверхности

Площадь поверхности геометрической фигуры измеряется в квадратных единицах. Очень часто используется в повседневной жизни, в строительстве, на производствах. Например, нужно вам покрасить комнату, зная сколько краски используется на кв. метр, и площади стен комнаты легко можно вычислить, сколько всего вам нужно купить краски.

Различают два вида площадей поверхности тел: Sбок — площадь боковой поверхности тела, и Р — площадь полной поверхности тела, которая равна сумме площадей боковой поверхности и основания тела.

Формула площади поверхности призмы

Площадь боковой поверхности прямой призмы равна периметру основания умноженному на высоту призмы (высота=боковому ребру).

Sбок = ph=pl

р — периметр основания;

h — высота;

l — боковое ребро.

Формула площади поверхности куба

Площадь боковой поверхности куба равна числу боковых граней умноженному на квадрат ребра.

Sбок = 4a2

Площадь полной поверхности куба равна числу всех граней куба умноженному на квадрат ребра.

P = 6a2

а — ребро куба.

Формула площади поверхности пирамиды

1) Правильная пирамида:

Sбок = 1/2pA

p — периметр основания;

A — апофема.

Sбок = S/cos φ

S — площадь основания;

φ — угол между боковой гранью и основанием пирамиды.

Sбок = Sгр n

Sгр — площадь одной боковой грани;
n — количество боковых граней пирамиды.

2) Правильная усеченная пирамида:

Sбок = 1/2(p1 + p2)A

p1 ,p2 — периметры оснований;

A — апофема.

Р = Sбок + S1 + S2

Р — площадь полной поверхности правильной усеченной пирамиды;

Sбок — площадь боковой поверхности правильной усеченной пирамиды;

S1 + S2 — площади оснований.

Формула площади поверхности цилиндра

Sбок = 2πrh = πdh

P = 2πr2+2πrh = 2π(r+h)

P — площадь полной поверхности цилиндра;

r — радиус цилиндра;

d — диаметр цилиндра;

h — высота цилиндра.

Формула площади поверхности конуса

1) Прямой круговой конус:

Sбок = πrl = 1/2 πdl

P = πr2 + πrl= πr(r+l)

P — площадь полной поверхности конуса;

r -радиус конуса;

d -диаметр конуса;

l — образующая конуса.

2) Усеченный прямой круговой конус:

Sбок = πl(r1 + r2) = 1/2πl(d1 + d2)

P = πl(r1 + r2) + π(r1 + r2)

P — площадь полной поверхности усеченного конуса;

r1, r2 — радиусы оснований усеченного конуса;

d1, d2 — диаметры оснований усеченного конуса;

l — образующая усеченного конуса.

Формула площади поверхности шара (сферы)

Шар — тело, созданное вращением полукруга вокруг диаметра.

Сфера — поверхность шара.

P = 4πR2 = πD2

Формула площади поверхности сферического сегмента

Сферический сегмент — часть сферы, что отсекается от сферы плоскостью.

Площадь поверхности пирамиды

Пирамида, основные понятия и элементы

Вспомним понятие n-угольной пирамиды. Она получается следующим образом: в плоскости лежит n-угольник с вершинами и т. д. Вне плоскости лежит точка Р. Точка Р соединяется с вершинами n-угольника – получаем пирамиду (рисунок 1).

Рис. 1. Пирамида

Определение.

Многогранник , составленный из n-угольника и n треугольников , … называется пирамидой.

Площадь поверхности пирамиды состоит из площади боковой поверхности и площади основания:

Площадь основания пирамиды, площади основных правильных многоугольников

Рассмотрим нахождение площади основания правильной n-угольной пирамиды. Правильный n-угольник, как нам известно, имеет равные стороны и равные внутренние углы. Решим следующую задачу: для n-угольника с заданной длиной стороны () и количеством углов (n) найти площадь (рисунок 2).

Рис. 2. Нахождение площади n-угольника

Рассмотрим треугольник , в нем найдем угол . Таких углов всего n штук, значит:

Половина этого угла, угол .

Треугольник , где М – середина стороны , прямоугольный. В нем ОМ – радиус вписанной в n-угольник окружности, – радиус описанной окружности. Поскольку у нас задан по условию катет рассматриваемого прямоугольного треугольника () и мы нашли острый угол (), то по соотношениям в прямоугольном треугольнике мы легко найдем все остальные элементы.

Чтобы найти площадь n-угольника, нужно сложить n площадей треугольников вида . Чтобы найти площадь этого треугольника, найдем катет ОМ прямоугольного треугольника :

Площадь треугольника определяется по формуле:

Теперь получим площадь всего n-угольника:

Рассмотрим наиболее распространенные частные случаи:

Площадь правильного треугольника:

Площадь квадрата:

Площадь правильного шестиугольника:

Чтобы нарисовать правильный шестиугольник, удобно пользоваться следующим алгоритмом (рисунок 3):

Построить окружность (зеленая пунктирная линия) Провести диаметр (синяя пунктирная линия) Отметить середины радиусов построенного диаметра Провести через середины перпендикуляры (красные пунктирные линии) Получены вершины шестиугольника – построить шестиугольник.

Рис. 3. Правильный шестиугольник

Чтобы найти площадь правильного шестиугольника действуем стандартным методом. Рассматриваем треугольник АОС, в нем находим угол ∠АОВ, таких углов шесть, имеем:

Поскольку отрезки ОА и ОВ равны, то углы ∠ОАВ и ∠ОВА также составляют по . Так, рассматриваемый треугольник правильный. Его площадь нам известна:

Площадь шестиугольника состоит из шести таких площадей:

Площадь боковой поверхности пирамиды

Рассмотрим нахождение площади боковой поверхности правильной пирамиды.

Где – периметр основания; – апофема.

Определение.

Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины.

Задача 1

В правильной треугольной пирамиде известна сторона основания и высота. Найти площадь боковой поверхности.

Решение. Проиллюстрируем условие задачи:

Рис. 4. Иллюстрация к задаче 1

Задана правильная пирамида с вершиной Р и основанием АВС. РН – высота пирамиды, РО – апофема. Сторона основания равняется . высота равняется . Высота и сторона основания полностью задают правильную пирамиду.

По вышеприведенной формуле для того, чтобы найти площадь боковой поверхности пирамиды, необходимо найти ее апофему и полупериметр основания. Периметр основания нам известен, так как задана сторона основания. Найдем апофему из прямоугольного треугольника РНО. Один из катетов задан по условию – . Найдем второй катет ОН, он соответствует радиусу вписанной в треугольник окружности, формула нам известна:

Найдем апофему по теореме Пифагора:

Теперь можем найти площадь боковой поверхности пирамиды:

Связь площади треугольника с площадью его проекции

Площадь боковой поверхности и площадь основания пирамиды связаны через величину двугранного угла при основании.

Решение задач

Задача 2

РН – перпендикуляр к плоскости треугольника АВН. Из точки Н опущен перпендикуляр НМ к прямой АВ. . Доказать:

Решение. Проиллюстрируем условие:

Рис. 5. Иллюстрация к задаче 2

Треугольник АВН – это проекция треугольника АВР. Нужно доказать, что площадь проекции есть площадь исходного треугольника на косинус двугранного угла между ними. Поскольку НМ – перпендикуляр к АВ, то и РМ – перпендикуляр к АВ по теореме о трех перпендикулярах. Значит, угол – это линейный угол двугранного угла с ребром АВ. АВР – часть боковой поверхности, АВН – часть основания.

Найдем отношение площадей интересующих нас треугольников:

Рассмотрим прямоугольный треугольник РНМ. В нем РМ – гипотенуза, НМ – катет, прилежащий к заданному углу . Отсюда заключаем:

Что и требовалось доказать.

Задача 3

Доказать для правильной треугольной пирамиды: , где – угол наклона боковой грани к основанию.

Решение. Проиллюстрируем условие:

Рис. 6. Иллюстрация к задаче 3

Задана правильная треугольная пирамида РАВС с основанием АВС и вершиной Р. – линейный угол двугранного угла с ребром АВ, точкой Р в одной плоскости и точкой С в другой плоскости.

Очевидно, что угол наклона боковой грани к основанию пирамиды одинаков для всех боковых граней, то есть если и – середины отрезков ВС, АС и АВ соответственно, то: .

В задаче 2 мы доказали: .

Аналогично:

Выполним сложение полученных выражений.

Что и требовалось доказать.

Задача 4

Боковые грани пирамиды РАВС наклонены к основанию под одним и тем же углом . Докажите, что вершина пирамиды Р проектируется в центр О вписанной в треугольник АВС окружности и что .

Решение. Проиллюстрируем условие задачи:

Рис. 7. Иллюстрация к задаче 4

Пусть РО – высота пирамиды. Найдем место расположения точки О. Из точки О опустим перпендикуляры к сторонам треугольника АВС – .

Поскольку – перпендикуляр к АВ, то по теореме о трех перпендикулярах . Аналогично: и . Тогда – линейный угол двугранного угла при ребре АВ, – линейный угол двугранного угла при ребре ВС, – линейный угол двугранного угла при ребре АС. По условию . Так, имеем равные прямоугольные треугольники: (по общему катету и равному острому углу). Из равенства треугольников следует равенство катетов: .

Так, точка О равноудалена от сторон треугольника АВС, то есть это центр его вписанной окружности, что и требовалось доказать.

Поскольку РО – высота пирамиды, то треугольники АОВ, АОС, СОВ – это проекции треугольников АРВ, АРС и ВРС соответственно. Имеем (основываясь на задаче 2):

Выполним сложение полученных выражений.

Что и требовалось доказать.

Итак, мы рассмотрели площадь поверхности пирамиды, в частности, площадь основания и площадь боковой поверхности, следующий урок будет посвящен задачам.

Список литературы

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Fmclass.ru (Источник).
  2. Rapidus.ru (Источник).
  3. 2mb.ru (Источник).

Домашнее задание

  1. Задача 1: основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно основанию. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом . Наибольшее боковое ребро равно 12 см. Найдите высоту пирамиды и площадь боковой поверхности.
  2. Задача 2: основанием пирамиды DABC является прямоугольный треугольник АВС, у которого гипотенуза АВ – 29 см, катет АС – 21 см. Боковое ребро DA перпендикулярно плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.
  3. Задача 3: основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы и . Найдите площадь поверхности пирамиды.

площадь боковой поверхности правильной треугольной призмы

См. также

Площадь квадрата Площадь прямоугольника Площадь параллелограмма Площадь трапеции Площадь ромба Площадь треугольника Площадь треугольника формула Герона Площадь треугольника через углы Площадь прямоугольного треугольника Площадь равнобедренного треугольника Площадь равностороннего треугольника Площадь круга Площадь сектора круга Площадь сегмента круга Площадь кольца Площадь сектора кольца Площадь поверхности куба Площадь поверхности конуса Площадь поверхности усеченного конуса Площадь поверхности сферы Площадь поверхности шарового слоя Площадь поверхности шарового сектора Площадь поверхности шарового сегмента Площадь поверхности цилиндра Площадь правильного многоугольника Площадь правильного пятиугольника Площадь правильного шестиугольника Площадь поверхности параллелепипеда Площадь правильной треугольной пирамиды Площадь правильной четырехугольной пирамиды Площадь правильной шестиугольной пирамиды Боковая поверхность правильной пирамиды Боковая поверхность правильной усеченной пирамиды Площадь полной поверхности правильной пирамиды через высоту Площадь боковой поверхности правильной пирамиды через высоту Площадь правильной треугольной призмы Площадь правильной четырехугольной призмы Площадь правильной пятиугольной призмы Площадь правильной шестиугольной призмы Боковая площадь прямой призмы площадь боковой поверхности правильной треугольной призмы площадь боковой поверхности правильной четырехугольной призмы площадь боковой поверхности правильной пятиугольной призмы площадь боковой поверхности шестиугольной призмы

Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.
Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот способ расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:

Рассмотрим пример расчета площади боковой поверхности пирамиды.

Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.
Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен:
Теперь можно найти боковую площадь пирамиды:

Площадь правильной треугольной пирамиды

Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными способами. Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.

Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет:
Подставляем значения в формулу:
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:

Площадь усеченной пирамиды

Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:

Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.

Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры.
Для начала найдем периметр оснований. В большем основании он будет равен:
В меньшем основании:
Посчитаем площадь:

Таким образом, применив несложные формулы, мы нашли площадь усеченной пирамиды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *