Математика это наука

Математика — царица всех наук
Гаусс Карл Фридрих

Математика — наука, исторически основанная на решении задач о количественных и пространственных соотношениях реального мира путём идеализации необходимых для этого свойств объектов и формализации этих задач. Наука, занимающаяся изучением чисел, структур, пространств и преобразований.

Как правило, люди думают, что математика — это всего лишь арифметика, то есть изучение чисел и действий с их помощью, например, умножения и деления. На самом деле математика — это намного больше. Это способ описать мир и то, как одна его часть сочетается с другой. Взаимоотношения чисел выражаются в математических символах, которые описывают Вселенную, в которой мы живем. Любой нормальный ребенок может преуспевать в математике, потому что «ощущение числа» — это врожденная способность. Правда, для этого нужно приложить некоторые усилия и затратить немного времени.

Умение считать — это еще не все. Ребенку необходимо уметь хорошо выражать свои мысли, чтобы понимать задачи и устанавливать связи между фактами, которые хранятся в памяти. Для того чтобы выучить таблицу умножения, нужны память и речь. Именно поэтому некоторым людям с поврежденным мозгом трудно умножать, хотя другие виды счета не представляют для них сложности.

Для того чтобы хорошо знать геометрию и разбираться в форме и пространстве, требуются и другие виды мышления. С помощью математики мы решаем в жизни проблемы, например, делим шоколадку поровну или находим нужный размер ботинок. Благодаря знанию математики ребенок умеет копить карманные деньги и понимает, что можно купить и сколько денег тогда у него останется. Математика — это еще и способность отсчитать нужное количество семян и посеять их в горшочек, отмерять нужное количество муки для пирога или ткани на платье, понять счет футбольной игры и множество других повседневных дел. Везде: в банке, в магазине, дома, на работе — нам необходимо умение понимать числа, формы и меры и обращаться с ними. Числа — это только часть особого математического языка, а лучший способ выучить любой язык — это применять его. И начинать лучше с ранних лет.

О математике «умно»

Обычно идеализированные свойства исследуемых объектов и процессов формулируются в виде аксиом, затем по строгим правилам логического вывода из них выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Т.о. первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное к математике положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе существует много различных определений математики.

Разделы математики

  • Математический анализ.
  • Алгебра.
  • Аналитическая геометрия.
  • Линейная алгебра и геометрия.
  • Дискретная математика.
  • Математическая логика.
  • Дифференциальные уравнения.
  • Дифференциальная геометрия.
  • Топология.
  • Функциональный анализ и интегральные уравнения.
  • Теория функций комплексного переменного.
  • Уравнения с частными производными.
  • Теория вероятностей.
  • Математическая статистика.
  • Теория случайных процессов.
  • Вариационное исчисление и методы оптимизации.
  • Методы вычислений, то есть численные методы.
  • Теория чисел.

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного математика — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. Пространство Rn, при n>3 является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Видео-лекция Смирнова С.К. и Ященко И.В. «Что такое математика»:

Похожая информация:

Математика: наука

Слово «математика» тоже пришло из древнегреческого языка. Сейчас мы прочно знаем, что математика – это наука о числах и количествах, о структурах, порядках и отношениях, что в нее входят арифметика и алгебра, геометрия и тригонометрия, и т.д. Однако очень интересно то, что в Древней Греции слово τό μάθημα (mathēma) первоначально значило просто знание, учение или науку вообще, то есть, любую науку. И, например, словосочетание τὰ παίδων μαθήματα, встречающееся у Платона, значит знания, приобретенные в детстве, а не детскую математику или подсчет детей.

Это древнегреческое слово является однокоренным с глаголом μανθάνω (manthanō) – учиться, изучать, понимать. А существительное ὁ μαθητής (mathētēs), встречающееся и в Новом Завете, обозначает вовсе не математика, а ученика или последователя какого-то учителя или учения.

В связи с такой любопытной этимологией я хотел бы отметить две очень важные, как мне кажется, вещи.

1) Во-первых, конечно, есть четкая логика в том, что слово, значившее сначала науку или знание вообще, потом закрепилось за наукой математикой. Ведь математика очень долго считалась образцом строгости и научности для всех других наук, своего рода королевой в царстве знаний. Например, «Начала» древнегреческого математика Евклида больше двух тысячелетий служили образцом для любого научного труда, а классическая евклидова геометрия считалась единственно возможной геометрией.

Галилео Галилей, заложивший основы математической физики, говорил, что книга природы написана на языке математики, и что надо уметь ее читать. Философ Спиноза строил свою знаменитую «Этику» more geometrico, т.е., по евклидову образцу – с аксиомами, теоремами, их доказательствами и леммами. А Карл Маркс однажды сказал даже, что любая наука лишь тогда станет совершенной, когда ей удастся воспользоваться математикой.

Современную физику нельзя представить нематематической. Знаменитый физик, лауреат Нобелевской премии по физике 1979 года Стивен Вайнберг говорит, что суть современной физики – по-прежнему количественное понимание явлений. И даже в квантовой физике то, что «материя исчезла», что стало совершенно непонятно, что же такое атом и его составные части (волны это или частицы), что они совершенно непредставимы и неизобразимы, эту неуловимость вещества поставили под численный учет и контроль (принцип неопределенности Гейзенберга). Современная неклассическая физика все равно измеряет неизмеримое, потому что она в принципе не может перестать считать, измерять и смотреть на мир через призму количественных отношений.

Однако где-то со второй половины XIX века все более и более ясным становилось то, что и математика тоже не является безусловным и строгим знанием, что ее основания тоже проблематичны. Кроме евклидовой геометрии были открыты геометрии неевклидовы – геометрии Лобачевского и Римана. С открытием теории относительности даже обнаружилось, что неевклидова геометрия согласно ей более адекватно описывает свойства космоса, мира в целом.

К началу ХХ века в математике также обнаружился кризис ее оснований, как и в других науках. Например, были обнаружены логико-математические парадоксы, которые сделали явной невыполнимость такой программы исследований оснований математики, которая получила название логицизма, то есть сведения всех математических положений к основоположениям логики. Поэтому доказать, что математика является логически непротиворечивой системой, не удалось. Самым знаменитым логико-математическим парадоксом, не имеющим решения, является парадокс Рассела. В более легкой формулировке он известен как парадокс брадобрея:

Единственному деревенскому брадобрею приказали: «Брить всякого, кто сам не бреется, и не брить того, кто сам бреется». Кто побреет брадобрея, и как ему поступить с сами собой? Брить или нет?

Словом, математика разделила судьбу всех других наук – от веры в их незыблемость и истинность до осознания их проблематичности и ненадежности самых главных основ. В ней произошло то, что можно назвать утратой определенности. Именно так – «Математика: утрата определенности» – называется блестящая научно-популярная книга о трудном историческом пути математики как науки известного американского математика Мориса Клайна.

Как он писал в «Введении», «эта книга – горестный рассказ о бедствиях, выпавших на долю математики – наиболее древнего и не имеющего себе равных творения людей, плода их неустанных и многообразных усилий, направленных на использование способности человека мыслить. Можно также сказать, что эта книга на общедоступном уровне повествует о расцвете и закате величия математики…

В настоящий момент положение дел в математике можно обрисовать примерно так. Существует не одна, а много математик, и каждая из них по ряду причин не удовлетворяет математиков, принадлежащих к другим школам. Стало ясно, что представление о своде общепринятых, незыблемых истин — величественной математике начала XIX в., гордости человека – не более чем заблуждение. На смену уверенности и благодушию, царившим в прошлом, пришли неуверенность и сомнения в будущем математики. Разногласия по поводу оснований самой “незыблемой” из наук вызвали удивление и разочарование (чтобы не сказать больше). Нынешнее состояние математики – не более чем жалкая пародия на математику прошлого с ее глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства».

2) Второе обстоятельство, связанное с математикой, имеет отношение к тому, что христианская вера – это именно вера, к ней неприложимы рациональные критерии, действующие в научном знании.

Ведь самые основы христианства – учение о Боге-Троице – вступают в полное противоречие с самыми элементарными математическими положениями. Ибо как можно рационально понять и осмыслить то, что Бог един и одновременно троичен?

Что Он – един в Трех Лицах? Что Святая Троица – Бог-Отец, Бог-Сын и Бог-Дух Святой – это три Лица Единственного и Единого Бога? Что три здесь равно одному, единице? Это входит в полное противоречие с нашими элементарными умственными и математическими навыками и привычками, с правилами счета, которые любой человек осваивает, как правило, еще в дошкольном возрасте.

Кстати, интересно и показательно, что великий английский физик Исаак Ньютон, основоположник математизированной классической физики в молодости учился в Кембриджском университете в колледже Святой Троицы и даже подумывал стать священником, но в итоге решил не связывать свою судьбу со священническим служением именно из-за сомнений в учении о Троице. Да и позже он активно высказывал свои антитринитарские воззрения.

Так что, наверно, прав был Тертуллиан, автор знаменитого «Верую, ибо абсурдно», и не менее знаменитого риторического вопроса «Что общего между Афинами и Иерусалимом?» В данном случае он просто выразил то, как следует грамотно думать о христианской вере, то, что она не знание, а именно вера, которая в своей основе радикально противоречит нашему логическому и математическому рацио, рассудку. Верить можно только в то, что не можешь знать сам по себе.

Основные понятия математики

Страница курса

Читается: 1-2 модуль 2 курса
Пререквизиты: нет
Трудоемкость: 5 кредитов

64 аудиторных часов:

  • 32 часов лекций;
  • 32 часов семинаров.

Формы контроля:

  • экзамен;
  • 1 контрольная работа;
  • 10 домашних заданий.

Преподаватели

Кириченко Валентина Алексеевна

Факультет математики: доцент


Цель курса:

Освоить ключевые математические концепции, используемые в современной математике и её многочисленных приложениях. Отталкиваясь от знакомых всем понятий школьной математики, таких как число, прямая, функция, мы получим их далеко идущие обобщения, такие как кольца, поля, векторные пространства, группы преобразований, операторы. Слушатели также узнают о целях, задачах и методах математики, от теории множеств и до начал алгебры, геометрии и анализа.

В курсе будут обсуждаться следующие темы:

  1. Что такое число? Натуральные числа: аксиомы Пеано и метод математической индукции. Вещественные числа: сечения Дедекинда, последовательности Коши. Комплексные числа, кватернионы, октавы, p-адические числа. Обобщения: кольца, поля, алгебры.
  2. Что такое планиметрия? Формальный метод Гильберта: системы аксиом евклидовой геометрии от Евклида до Гильберта и Колмогорова. Группы движений плоскости и пространства. Обобщения: аксиомы линейного пространства, линейные операторы, базисы, размерность, классические группы.
  3. Что такое множество? Множества, функции и отображения. Комбинаторика: принцип Дирихле и бином Ньютона. Бинарные отношения, отношения эквивалентности и порядка. Счетные множества, несчетные множества. Диагональный метод Кантора и парадоксы наивной теории множеств.

Домашние задания и задачи семинаров:

Записки лекций (2-й модуль):

  • Лекции_до_30_11

Литература:

Дополнительное чтение

С.В.Фомин. Системы счисления, 5-е изд., М., Наука, 1987

И.В. Арнольд. Теоретическая арифметика, М., Учпедгиз, 1938

А. Шень. Математическая индукция, 3-е изд., М., МЦНМО, 2007

Г.Е. Шилов. Простая гамма (устройство музыкальной шкалы), Физматгиз, 1963

Д. Гильберт. Основания геометрии, Л., «Сеятель», 1923

Евклид. Начала, Санкт-Петербург, 1819

В.Ю. Протасов. Максимумы и минимумы в геометрии, Библиотека «Математическое просвещение», Выпуск 3, МЦНМО, 2005

Н.Я. Виленкин. Теория множеств, 4-е изд., М., МЦНМО, 2007

Другие курсы майнора:

  • Вычислимость и сложность
  • Логика
  • Графы и топология

https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D1%8B_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B8

Существует три официальных способа подразделения математики.

Математика как специальность Править

Математика как специальность научных работников министерства науки и технологий Российской Федерации подразделяется на научные специальности

  • Математический анализ
  • Дифференциальные уравнения
  • Математическая физика
  • Геометрия и топология
  • Теория вероятностей и математическая статистика
  • Математическая логика, алгебра и теория чисел
  • Вычислительная математика
  • Дискретная математика и математическая кибернетика

Математика как учебная дисциплина Править

Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

  • арифметика,
  • элементарная алгебра,
  • элементарная геометрия: планиметрия и стереометрия,
  • теория элементарных функций и элементы анализа,

и высшую математику, изучаемую в вузе. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности. Программа обучения по специальности математика образована следующими учебными дисциплинами:

  • Математический анализ (ф)
  • Алгебра
  • Аналитическая геометрия (ф)
  • Линейная алгебра (ф) и геометрия
  • Дискретная математика
  • Математическая логика
  • Дифференциальные уравнения (ф)
  • Дифференциальная геометрия
  • Топология
  • Функциональный анализ и интегральные уравнения (ф)
  • Теория функций комплексного переменного (ф)
  • Уравнения с частными производными (вместо этого курса физикам читаются Методы математической физики)
  • Теория вероятностей (ф)
  • Математическая статистика (ф)
  • Теория случайных процессов
  • Вариационное исчисление (ф) и методы оптимизации
  • Методы вычислений, то есть численные методы (ф)
  • Теория чисел

Знаком (ф) отмечены дисциплины, которые изучаются при обучении по специальности «физика».

Математика как наука Править

Для систематизации математических научных работ в США и других западных странах используется Математическая предметная классификация. В России для систематизации всех научных работ используется Универсальная десятичная классификация 51.

Примечания Править

  1. Номенклатура специальностей научных работников. Утверждена Приказом Министерства науки и технологий Российской Федерации от 25 января 2000 г. № 17/4
  2. Государственный образовательный стандарт высшего профессионального образования. Специальность 01.01.00. «Математика». Квалификация — Математик. Москва, 2000 (Составлено под руководством О. Б. Лупанова)

Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия), возможно, нарушая при этом правило о взвешенности изложения.Вы можете помочь Науке, добавив информацию для других стран и регионов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *