Квадрат

Квадрат

Свойства квадрата

1. Длины сторон квадрата равны.

AB=BC=CD=DA

2. Все углы квадрата прямые.

\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}

3. Противолежащие стороны квадрата параллельны друг другу.

AB \parallel CD, BC \parallel AD

4. Сумма всех углов квадрата равна 360 градусов.

\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^{\circ}

5. Величина угла между диагональю и стороной равна 45 градусов.

\angle BAC = \angle BCA = \angle CAD = \angle ACD = 45^{\circ}

Доказательство

6. Диагонали квадрата — тождественны, перпендикулярны и разделяются точкой пересечения пополам.

AO = BO = CO = DO

\angle AOB = \angle BOC = \angle COD = \angle AOD = 90^{\circ}

AC = BD

Доказательство

Так как квадрат это прямоугольник \Rightarrow диагонали равны; так как — ромб \Rightarrow диагонали перпендикулярны. А так как — параллелограмм, \Rightarrow диагонали разделены точкой пересечения пополам.

7. Каждая из диагоналей делит квадрат на два равнобедренных прямоугольных треугольника.

\triangle ABD = \triangle CBD = \triangle ABC = \triangle ACD

8. Обе диагонали делят квадрат на 4 равнобедренных прямоугольных треугольника.

Квадрат, свойства и формулы, площадь и периметр.

Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.

Квадрат (понятие, определение), диагональ квадрата

Свойства квадрата

Формулы квадрата. Площадь квадрата. Периметр квадрата


Квадрат (понятие, определение), диагональ квадрата:

Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.

Квадрат – это четырехугольник, имеющий равные стороны и углы.

Рис. 1. Квадрат

Все углы квадрата прямые. Каждый из них прямой и равен 90°.

Таким образом, все квадраты отличаются друг от друга только длиной стороны.

Рис. 2. Квадрат и диагонали квадрата

Диагональ квадрата – это отрезок, соединяющий две вершины противоположных углов квадрата. AC и BD – это диагонали квадрата.

Квадрат является одновременно частным случаем других фигур: параллелограмма, ромба и прямоугольника. Поэтому квадрату присущи все свойства параллелограмма, ромба и прямоугольника.

Квадрат – это равносторонний прямоугольник.

Квадрат – это ромб с прямыми углами.


Свойства квадрата:

1. Длины всех сторон равны.

Рис. 3. Квадрат

AB = BC = CD = AD

2. Противоположные стороны квадрата параллельны.

Рис. 4. Квадрат

AB||CD, BC||AD

3. Все углы квадрата прямые. Каждый из них равен 90°.

Рис. 5. Квадрат

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

4. Сумма углов квадрата равна 360 градусам.

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°.

5. Диагонали квадрата равны между собой.

Рис. 6. Квадрат

AC = BD

6. Диагонали квадрата взаимно перпендикулярны.

Рис. 7. Квадрат

AC ┴ BD

7. Диагонали квадрата точкой пересечения делятся пополам.

Рис. 8. Квадрат

BO = OD = AO = OC

8. Угол между диагональю и стороной квадрата равен 45 градусам.

Рис. 9. Квадрат

∠BCA = ∠ACD = ∠DAC = ∠CAB = 45°

9. Диагонали квадрата являются биссектрисами углов и делят углы пополам.

Рис. 10. Квадрат

∠ABD = ∠DBC = ∠BCA = ∠ACD = ∠CDB = ∠BDA = ∠DAC = ∠CAB = 45°

10. Каждая из диагоналей делит квадрат на два равных равнобедренных прямоугольных треугольника.

Обе диагонали делят квадрат на 4 равных равнобедренных прямоугольных треугольника.

Рис. 11. Квадрат

△ABD = △CBD = △ABC = △ACD,

△AOB = △BOC = △COD = △AOD

11. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности.

Рис. 12. Квадрат


Формулы квадрата. Площадь квадрата. Периметр квадрата:

Пусть a – длина стороны квадрата, d – диагональ квадрата, R – радиус описанной окружности квадрата, r – радиус вписанной окружности квадрата, P – периметр квадрата, S – площадь квадрата.

Формула диагонали квадрата:

, , , , .

Формула радиуса вписанной окружности квадрата:

Радиус вписанной окружности квадрата равен половине его стороны.

Квадрат — определение и свойства

Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.

Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.

Перечислим свойства квадрата:

  1. Все углы квадрата — прямые, все стороны квадрата — равны.
  2. Диагонали квадрата равны и пересекаются под прямым углом.
  3. Диагонали квадрата делят его углы пополам.

Площадь квадрата, очевидно, равна квадрату его стороны: .
Диагональ квадрата равна произведению его стороны на , то есть
.

Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.

1. Найдите сторону квадрата, диагональ которого равна .

Мы знаем, что . Тогда .

2. Найдите радиус окружности, описанной около квадрата со стороной, равной .

Очевидно, радиус окружности равен половине диагонали квадрата.

Ответ: .

3. Найдите сторону квадрата, описанного около окружности радиуса .

Диаметр окружности равен стороне квадрата.

Ответ: .

4. Найдите радиус окружности, вписанной в квадрат , считая стороны квадратных клеток равными .

Чуть более сложная задача. Нарисуйте окружность, вписанную в данный квадрат, то есть касающуюся всех его сторон. Вы увидите, что диаметр этой окружности равен стороне квадрата.

Ответ: .

5. Найдите радиус окружности, вписанной в четырехугольник . В ответе укажите
.

Считаем стороны клеток равными единице. Четырехугольник — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.

Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, . Она равна . Тогда радиус вписанной окружности равен . В ответ запишем .

Ответ: .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *