Корень 16

Корни и степени

Степенью называется выражение вида .

Здесь — основание степени, — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

Возвести число в куб — значит умножить его само на себя три раза.

Возвести число в натуральную степень — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

Это верно для . Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где — целое, — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень из числа — это такое неотрицательное число, квадрат которого равен .

Согласно определению,

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение для нас сейчас имеет смысл только при .

Выражение всегда неотрицательно, т.е. . Например, .

Свойства арифметического квадратного корня:

Кубический корень

Аналогично, кубический корень из — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

, так как ;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа — это такое число, при возведении которого в -ную степень получается число .

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени больше 0.

Например,

Выражение по определению равно .

При этом также выполняется условие, что больше 0.

Например,

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

Корень квадратный из 16 равен 4

Если у вас возникла необходимость вычислить корень из числа 16. Вы можете воспользоваться нашим онлайн калькулятором корней, который с легкостью вычислит корень 2 степени из числа 16. Так же наш онлайн калькулятор корней может вычислять квадратные корни, кубические корни и корни любой другой степени, включая дробную степень.
Этот сайт выручит школьников, студентов и людей, которым требуется надежный инструмент для вычисления квадратного корня онлайн. В школе эта тема изучается вскользь, а в жизни иногда требуется выполнить максимально быстрое и абсолютно правильное математическое задание.
Если ваш калькулятор не обладает такой функцией, или его просто нет поблизости, а вычисления на бумаге займут огромное количество времени, а иногда и усилий, то на этом сайте можно одолеть задачу в считанные секунды. Он готов решать задачу прямо сейчас.
Онлайн вычисление корня совершенно бесплатно. Мы предусмотрели максимально полезный и удобный интерфейс с возможностью ввода чисел не только с помощью мыши, но и клавиатуры. Сложные математические расчеты станут настоящим удовольствием даже для тех, кто имел в школе двойку по математике!
Пожелания и вопросы присылайте на — admin@vsekorni.ru
Онлайн вычисление корня. © 2011-2020, vsekorni.ru

Из этой статьи вы узнаете:

  • что такое «извлечение корня»;
  • в каких случаях он извлекается;
  • принципы нахождения значения корня;
  • основные способы извлечения корня из натуральных и дробных чисел.

Что такое «извлечение корня»

Для начала введем определение «извлечение корня».

Определение 1

Извлечение корня — процесс нахождения значения корня.

При извлечении корня n-ной степени из числа a, мы находим число b, n-ная степень которого равняется a. Если мы нашли такое число b, можно утверждать, что корень извлечен.

Замечание 1

Выражения «извлечение корня» и «нахождение значения корня» равнозначны.

В каких случаях извлекается корень?

Определение 2

Корень n-ной степени можно извлечь из числа a точно в случае, если a можно представить в виде n-ной степени некоторого числа b.

Пример 1

4=2×2, следовательно, из числа 4 можно точно извлечь квадратный корень, который равен 2

Определение 3

Когда корень n-ной степени из числа a невозможно представить в виде n-ной степени числа b, то такой корень не извлекается либо извлекается только приближенное значение корня с точностью до любого десятичного разряда.

Пример 2

2≈1,4142.

Принципы нахождения значения корня и способы их извлечения

  • Использование таблицы квадратов, таблицы кубов и т.д.
  • Разложение подкоренного выражения (числа) на простые множители
  • Извлечение корней из дробных чисел
  • Извлечение корня из отрицательного числа
  • Поразрядное нахождение значения корня

Необходимо понять, по каким принципам находится значение корней, и каким образом они извлекаются.

Определение 4

Главный принцип нахождения значения корней — основываться на свойствах корней, в том числе на равенстве: bnn=b, которое является справедливым для любого неотрицательного числа b.

Начать следует с наиболее простого и очевидного способа: таблицы квадратов, кубов и т.д.

Когда таблицы под руками нет, вам поможет способ разложения подкоренного числа на простые множители (способ незатейливый).

Стоит уделить внимание извлечению корня из отрицательного числа, что является возможным для корней с нечетными показателями.

Изучим, как извлекать корни из дробных чисел, в том числе из смешанных чисел, обыкновенных и десятичных дробей.

И потихоньку рассмотрим способ поразрядного нахождения значения корня — наиболее сложного и многоступенчатого.

Использование таблицы квадратов, кубов и т.д.

Таблица квадратов включает в себя все числа от 0 до 99 и состоит из 2 зон: в первой зоне можно составить любое число до 99 с помощью вертикального столбца с десятками и горизонтальной строки с единицами, во второй зоне содержатся все квадраты образуемых чисел.

Таблица квадратов

Таблица квадратов единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2041
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Существуют также таблицы кубов, четвертой степени и т.д., которые созданы по принципу, аналогичному таблице квадратов.

Таблица кубов

Таблица кубов единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 8 27 64 125 216 343 512 729
1 1000 1 331 1 728 2 197 2 744 3 375 4 096 4 913 5 832 6 859
2 8000 9 261 10 648 12 167 13 824 15 625 17 576 19 683 21 952 24 389
3 27000 29 791 32 768 35 937 39 304 42 875 46 656 50 653 54 872 59 319
4 64000 68 921 74 088 79 507 85 184 91 125 97 336 103 823 110 592 117 649
5 125000 132 651 140 608 148 877 157 464 166 375 175 616 185 193 195 112 205 379
6 216000 226 981 238 328 250 047 262 144 274 625 287 496 300 763 314 432 328 509
7 343000 357 911 373 248 389 017 405 224 421 875 438 976 456 533 474 552 493 039
8 512000 531 441 551 368 571 787 592 704 614 125 636 056 658 503 681 472 704 969
729000 753 571 778 688 804 357 830 584 857 375 884 736 912 673 941 192 970 299

Принцип функционирования таких таблиц прост, однако их часто нет под рукой, что значительно усложняет процесс извлечение корня, поэтому необходимо владеть минимум несколькими способами извлечения корней.

Разложение подкоренного числа на простые множители

Наиболее удобный способ нахождения значения корня после таблицы квадратов и кубов.

Определение 5

Способ разложения подкоренного числа на простые множители подразумевает под собой представление числа в виде степени с необходимым показателем, что дает нам возможность получить значение корня.

Слишком сложно? Не парься, мы поможем разобраться и подарим скидку 10% на любую работу Опиши задание Пример 3

Извлечем квадратный корень из 144.

Разложим 144 на простые множители:

Таким образом: 144=2×2×2×2×3×3=(2×2)2×32=(2×2×3)2=122. Следовательно, 144=122=12.

Также при использовании свойств степени и корней можно записать преобразование немного по-другому:

144=2×2×2×2×3×3=24×32=24×32=22×3=12

144=12 — окончательный ответ.

Извлечение корней из дробных чисел

Запоминаем: любое дробное число должно быть записано в виде обыкновенной дроби.

Определение 6

Следуя свойству корня из частного, справедливым является следующее равенство:

pqn=pnqn. Исходя из этого равенства, необходимо воспользоваться правилом извлечения корня из дроби: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 4

Рассмотрим пример извлечения корня из десятичной дроби, поскольку извлечь корень из обыкновенной дроби можно с помощью таблицы.

Необходимо извлечь кубический корень из 474,552. Первым делом, представим десятичную дробь в виде обыкновенной: 474,552 = 474552/1000. Из этого следует: 47455210003=474552310003. Затем можно приступить к процессу извлечения кубических корней в числителе и знаменателе:

474552=2×2×2×3×3×3×13×13×13=(2×3×13)3=783 и 1000=103, то

4745523=7833=78 и 10003=1033=10.

Завершаем вычисления: 474552310003=7810=7,8.

Извлечение корня из отрицательных чисел

Если знаменатель является нечетным числом, то число под знаком корня может оказаться отрицательным. Из этого следует: для отрицательного числа -a и нечетного показателя корня 2n-1 справедливо равенство:

-a2×n-1=-a2×n-1

Определение 7

Правило извлечения нечетной степени из отрицательных чисел: чтобы извлечь корень из отрицательного числа необходимо извлечь корень из противоположного ему положительного числа и поставить перед ним знак минус.

Пример 5

-122092435. Для начала необходимо преобразовать выражение, чтобы под знаком корня оказалось положительно число:

-122092435=12209243-5​​​​​​

Затем следует заменить смешанное число обыкновенной дробью:

12209243-5=3125243-5

Пользуясь правилом извлечения корней из обыкновенной дроби, извлекаем:

3125243-5=-312552435

Вычисляем корни в числителе и знаменателе:

-312552435=-555355=-53=-123

Краткая запись решения:

-122092435=12209243-5=3125243-5=-312552435=-555355=-53=-123.

Ответ: -122092435=-123.

Поразрядное нахождение значения корня

Бывают случаи, когда под корнем находится число, которое не получается представить в виде n-ной степени некоторого числа. Но необходимо знать значение корня с точностью до некоторого знака.

В таком случае необходимо воспользоваться алгоритмом поразрядного нахождения значения корня, с помощью которого можно получить достаточное количество значений искомого числа.

Пример 6

Как это происходит, разберем на примере извлечения квадратного корня из 5.

Сперва необходимо найти значение разряда единиц. Для этого начнем перебирать значения 0,1,2,…,9, вычисляя при этом 02, 12, …, 92 до необходимого значения, которое больше, чем подкоренное число 5. Все это удобно представить в виде таблицы:

Возможное значение корня 0 1 2 3
Это значение в степени 0 1 4 9
Возможное значение корня 2,0 2,1 2,2 2,3
Это значение в степени 4 4,41 4,84 5,29

Поскольку 2,22<5, а 2,32>5, то значение десятых равняется 2. Переходим к нахождению значения сотых:

Возможное значение корня 2.20 2,21 2,22 2,23 2,24
Это значение в степени 4,84 4,8841 4,8294 4,9729 5,0176

Таким образом, найдено значение корня из пяти — 2,23. Можно находить значения корня дальше:

Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.
Теорема 1. Корень n-й степени (n=2, 3, 4,…) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если, и n — натуральное число, большее 1, то справедливо равенство

Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени, т.е. только корни с одинаковым показателем.

Теорема 3. Если, k — натуральное число и n — натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это — следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4. Если, k, n — натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5. Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.

Примеры решения заданий
Пример 1. Вычислить
Решение. Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2), получим:

Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления:

Пример 4.

(показатели корня и подкоренного выражения разделили на 4);

(показатели корня и подкоренного выражения разделили на 3);

(показатели корня и подкоренного выражения умножили на 2).
решении примера 5, где требовалось выполнить умножение корней с разными показателями:

Пример 5. Вычислить

Решение. Вот как обычно рассуждают в подобных случаях.
1) По теореме 5 в выражении можно и показатель корня (т.е. число 2) и показатель подкоренного выражения (т.е. число 1) умножить на одно и то же натуральное число. Воспользовавшись этим, умножим оба показателя на 3; получим:
2) По теореме 5 в выражении можно и показатель корня (т.е. число 3) и показатель подкоренного выражения (т.е. число 1) умножить на одно и то же натуральное число. Воспользовавшись этим, умножим оба показателя на 2; получим:
3) Поскольку получили корни одной и той же 6-й степени, то можно их перемножить:
Задания по теме: «Свойства корня n-ой степени»
Задание № 1
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю
Задание № 2
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю.
Упростите:
Задание № 3
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю.
Избавьтесь от иррациональности в знаменателе:
Задание № 4
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю.
Задание № 5
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю.
Задание № 6
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю.
Задание № 7
Скачай задание из Приложений к странице. Распечатай, выполни предложенные задания, отсканируй и отошли учителю.

Применение операции корня к числам

Квадратный корень из числа — это такое число, квадрат которого (результат умножения на себя) равен , то есть решение уравнения относительно переменной . Часто под этим понятием подразумевают более узкое — т. н. арифметический квадратный корень — неотрицательное число.

Рациональные числа

Корень из рационального числа является рациональным числом, только если и (после сокращения общих множителей) являются квадратами натуральных чисел.

Непрерывная дробь корня из рационального числа всегда является периодической (возможно с предпериодом) что позволяет с одной стороны легко вычислять хорошие рациональные приближения к ним с помощью линейных рекуррент, а с другой стороны ограничивает точность приближения: , где зависит от . Верно и обратное: любая периодическая цепная дробь является квадратичной иррациональностью.

Действительные числа

При натуральных уравнение не всегда разрешимо в рациональных числах, что и привело к появлению новых числовых полей. Древнейшее из таких расширений — поле вещественных (действительных) чисел.

Теорема. Для любого положительного числа a существует ровно два вещественных корня, которые равны по модулю и противоположны по знаку.

Неотрицательный квадратный корень из положительного числа называется арифметическим квадратным корнем и обозначается с использованием знака радикала .

Комплексные числа

Над полем комплексных чисел решений всегда два, отличающихся только знаком (за исключением квадратного корня из нуля). Корень из комплексного числа часто обозначают как , однако использовать это обозначение нужно осторожно. Распространённая ошибка:

Для извлечения квадратного корня из комплексного числа удобно использовать экспоненциальную форму записи комплексного числа: если

,

то (см. Формула Муавра)

,

где корень из модуля понимается в смысле арифметического значения, а k может принимать значения k=0 и k=1, таким образом в итоге в ответе получаются два различных результата.

Вещественный анализ

График функции

Квадратным корнем называют также функцию вещественной переменной , которая каждому ставит в соответствие арифметическое значение корня. Эта функция является частным случаем степенной функции с . Эта функция является гладкой при , в нуле же она непрерывна справа, но не дифференцируема.

Обобщения

Квадратные корни вводятся как решения уравнений вида и для других объектов: матриц, функций, операторов и т. п. В качестве операции при этом могут использоваться достаточно произвольные мультипликативные операции, например, суперпозиция.

В алгебре применяется следующее формальное определение: Пусть — группоид и . Элемент называется квадратным корнем из если .

Квадратный корень в элементарной геометрии

Квадратные корни тесно связаны с элементарной геометрией: если дан отрезок длины 1, то с помощью циркуля и линейки можно построить те и только те отрезки, длина которых записывается выражениями, содержащими целые числа, знаки четырёх действий арифметики, квадратные корни и ничего сверх того.

Квадратный корень в информатике

Во многих языках программирования функционального уровня (а также языках разметки типа LaTeX) функция квадратного корня обозначается как sqrt (от англ. square root «квадратный корень»).

Алгоритмы нахождения квадратного корня

Нахождение или вычисление квадратного корня заданного числа называется извлечением (квадратного) корня.

Разложение в ряд Тейлора

при .

Арифметическое извлечение квадратного корня

Для квадратов чисел верны следующие равенства:

и так далее.

То есть, узнать целую часть квадратного корня числа можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и посчитав количество выполненных действий. Например, так:

Выполнено 3 действия, квадратный корень числа 9 равен 3.

Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне доступен детям, решающим простейшие математические задачи, требующие извлечения квадратного корня.

Грубая оценка

Многие алгоритмы вычисления квадратных корней из положительного действительного числа S требуют некоторого начального значения. Если начальное значение слишком далеко от настоящего значения корня, вычисления замедляются. Поэтому полезно иметь грубую оценку, которая может быть очень неточна, но легко вычисляется. Если S ≥ 1, пусть D будет числом цифр S слева от десятичной запятой. Если S < 1, пусть D будет числом нулей, идущих подряд, справа от десятичной запятой, взятое со знаком минус. Тогда грубая оценка выглядит так:

Если D нечётно, D = 2n + 1, тогда используем Если D чётно, D = 2n + 2, тогда используем

Два и шесть используются потому, что и

При работе в двоичной системе (как внутри компьютеров), следует использовать другую оценку (здесь D это число двоичных цифр).

Геометрическое извлечение квадратного корня

В частности, если , а , то

Итерационный аналитический алгоритм

Основная статья: Итерационная формула Герона

тогда

Столбиком

Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. Такой способ может быть освоен даже школьником. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр.

Для ручного извлечения корня применяется запись, похожая на деление столбиком. Выписывается число, корень которого ищем. Справа от него будем постепенно получать цифры искомого корня. Пусть извлекается корень из числа с конечным числом знаков после запятой. Для начала мысленно или метками разобьём число N на группы по две цифры слева и справа от десятичной точки. При необходимости, группы дополняются нулями — целая часть дополняется слева, дробная справа. Так 31234.567 можно представить, как 03 12 34 . 56 70. В отличие от деления снос производится такими группами по 2 цифры.

  1. Записать число (в примере — 69696) на листке.
  2. Найти , квадрат которого меньше или равен группе старших разрядов числа (старшая группа — самая левая не равная нулю), а квадрат больше группы старших разрядов числа. Записать найденное справа от N (это очередная цифра искомого корня). (На первом шаге примера , а ).
  3. Записать квадрат под старшей группой разрядов. Провести вычитание из старшей группы разрядов выписанного квадрата числа и записать результат вычитания под ними.
  4. Слева от этого результата вычитания провести вертикальную черту и слева от черты записать число равное уже найденным цифрам результата (мы их выписываем справа от N) умноженное на 20. Назовём это число . (На первом шаге примера это число просто есть , на втором ).
  5. Произвести снос следующей группы цифр, то есть дописать следующие две цифры числа справа от результата вычитания. Назовем число, полученное соединением результата вычитания и очередной группы из двух цифр. (На первом шаге примера это число , на втором ). Если сносится первая группа после десятичной точки числа , то нужно поставить точку справа от уже найденных цифр искомого корня.
  6. Теперь нужно найти такое , что меньше или равно , но больше, чем . Записать найденное справа от N, как очередную цифру искомого корня. Вполне возможно, что окажется равным нулю. Это ничего не меняет — записываем 0 справа от уже найденных цифр корня. (На первом шаге примера это число 6, так как , но ) Если число найденных цифр уже удовлетворяет искомой точности прекращаем процесс вычисления.
  7. Записать число под . Провести вычитание столбиком числа из и записать результат вычитания под ними. Перейти к шагу 4.

Наглядное описание алгоритма:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *