Как возвести в 3 степень?

Отрицательная степень

Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно прочитать урок «Степень» и «Свойства степеней».

Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении примеров.

Как возвести число в отрицательную степень

Запомните!

Чтобы возвести число в отрицательную степень нужно:

  • «перевернуть» число. Записать его в виде дроби с единицой наверху (в числителе) и с исходным числом в степени внизу;
  • заменить отрицательную степень на положительную;
  • возвести число в положительную степень.

Общая формула возведения в отрицательную степень выглядит следующим образом.

a−n =

,где a ≠ 0, n ∈ z (n принадлежит целым числам).

Примеры возведения в отрицательную степень.

  • 6−2 =

    =

  • (−3)−3 =

    (−3)3

    =

    −27

    = −

  • 0,2−2 =

    0,22

    =

    0,04

Запомните!

Любое число в нулевой степени — единица.

a0 = 1 ,где a ≠ 0

Примеры возведения в нулевую степень.

  • (

    )0 = 1

  • (−5)0 = 1
  • d0 = 1

Как найти 10 в минус 1 степени

В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:

10−1 = 0,1

Теперь, зная определение отрицательной степени, давайте разберемся, почему «10» в минус первой степени равно «0,1».

Возведем «10−1» по правилам отрицательной степени. Перевернем «10» и запишем её в виде дроби «

» и заменим отрицательную степень «−1» на
положительную степень «1». 10−1 =

Возведем «10» в «1» степень. Помним, что любое число в первой степени равно самому числу.

10−1 =

=

Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.

10−1 =

=

= 0,1

По такому же принципу можно найти «10» в минус второй, третьей и т.д.

10−2 = 0,01
10−3 = 0,001
10−4 = 0,0001 Запомните!

Для упрощения перевода «10» в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один».

Проверим правило выше для «10−2».

Т.к. у нас степень «−2», значит, будет всего один ноль (положительное значение степени «2 − 1 = 1». Сразу после запятой ставим один ноль и за ним «1».

10−2 = 0,01

Рассмотрим «10−1».

Т.к. у нас степень «−1», значит, нулей после запятой не будет (положительное значение степени «1 − 1 = 0». Сразу после запятой ставим «1».

10−1 = 0,1

То же самое правило работает и для «10−12». При переводе в десятичную дробь будет «12 − 1 = 11 » нулей и «1» в конце.

10−12 = 0,000 000 000 001

Как возвести в отрицательную степень дробь

Запомните!

Чтобы возвести дробь в отрицательную степень нужно:

  • «перевернуть» дробь;
  • заменить отрицательную степень на положительную;
  • возвести дробь в положительную степень.

Пример. Требуется возвести в отрицательную степень дробь.

(

)−3 = Перевернем дробь «

» и заменим отрицательную степень «−3» на положительную «3». (

)−3 = (

)3

Возведем дробь в положительную степень по правилу возведения дроби в положительную степень. Т.е. возведем и числитель «3», и знаменатель «10» в третью степень.

(

)−3 = (

)3 =

=

Для более грамотного ответа запишем полученный результат в виде десятичной дроби.

(

)−3 = (

)3 =

=

= 0,027

Как возвести отрицательное число в отрицательную степень

Как и при возведении отрицательного числа в положительную степень, в первую очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.

Запомните!

Отрицательное число, возведённое в чётную степень, — число положительное.

Отрицательное число, возведённое в нечётную степень, — число отрицательное.

Пример.

(−5) −2 =

Перевернем число «−5» и заменим отрицательную степень «−2»
на положительную «2».

(−5) −2 = (−

) 2 =

Так как степень «2» — четная, значит, результат возведения в степень будет положительный. Поэтому убираем знак минуса при раскрытии скобок.

Далее откроем скобки и возведем во вторую степень и числитель «1»,
и знаменатель «5».

(−5) −2 = (−

) 2 =

=

Как возвести отрицательную дробь в отрицательную степень

Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.

Запомните!

Отрицательная дробь, возведённая в чётную степень, — дробь положительная.

Отрицательная дробь, возведённая в нечётную степень, — дробь отрицательная.

Разберемся на примере. Задание: возвести отрицательную дробь «(−

)» в «−3» степень.

По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень «−3» на положительную «3».

(−

) −3 = (−

) 3 =

Теперь определим конечный знак результата возведения в «3» степень.

Степень «3» — нечетная, значит, по правилу возведения отрицательного числа в степень дробь останется отрицательной.

Нам остается только раскрыть скобки и возвести в степень и числитель «3», и знаменатель «2» в третью степень.

(−

) −3 = (−

) 3 = −

= −

Для окончательного ответа выделим целую часть из дроби.

(−

) −3 = (−

) 3 = −

= −

= − 3

Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.

Правило возведения отрицательного числа в степень гласит: если степень четная, значит, результат возведения будет положительным.

(−

) −2 = (−

) 2 =

=

= 1

Свойства отрицательной степени

Все свойства степени, которые используются для положительной степени, точно также применяются и для отрицательной степени.

В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени и покажем примеры их использования.

Запомните!

  • am · an = am + n
  • = am − n

  • (an)m = an · m
  • (a · b)n = an · bn

Примеры решений заданий с отрицательной
степенью

Колягин 9 класс. Задание № 1

Представить в виде степени.

2) a6 · b6 = (ab)6
4) (c5)2 = c10

Колягин 9 класс. Задание № 5

Записать в виде степени с отрицательным числом.

1)

= 4−5
2)

= a−9

Колягин 9 класс. Задание № 11

Вычислить.

Числа. Степень числа.

Общеизвестный факт что сумму нескольких равных слагаемых можно найти с помощью умножения. Например : 5+5+5+5+5+5=5х6. О таком выражении говорят, что сумму равных слагаемых свернули в произведение. И наоборот, если читать это равенство справа налево, получаем, что мы развернули сумму равных слагаемых. Аналогично можно сворачивать произведение нескольких равных множителей 5х5х5х5х5х5=56.

То есть вместо умножения шести одинаковых множителей 5х5х5х5х5х5 пишут 56 и говорят «пять в шестой степени».

Выражение 56- это степенью числа, где:

5 — основание степени;

6 — показатель степени.

Действия, с помощью которых произведение равных множителей сворачивают в степень, называют возведением в степень.

В общем виде степень с основанием «a» и показателем «n» записывается так

Возвести число a в степень n – значит найти произведение n множителей, каждый из которых равен а

Если основание степени «а» равно 1, то значение степени при любом натуральном n будет равно 1. Например, 15 =1, 1256=1

Если возвести число «а» возвести в первую степень, то получим само число a: a1 = a

Если возвести любое число в нулевой степень, то в результате вычислений получим один . a0 = 1

Особыми считают вторую и третью степень числа. Для них придумали названия: вторую степень называют квадратом числа, третью – кубом этого числа.

В степень можно возводить любое число — положительное, отрицательное или нуль. При этом не пользуются следующими правилами:

-при нахождении степени положительного числа получается положительное число.

-при вычислениях нуля в натуральной степени получаем ноль.

— при вычислении степени отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Если решить несколько примеров на вычисление степени отрицательных чисел, то получится, что если мы вычисляем нечётную степень отрицательного числа, то в результате будет число со знаком минус. Так как при умножении нечётного количество отрицательных сомножителей получаем отрицательное значение.

Если же мы рассчитываем четную степень для отрицательного числа, то в результате будет положительное число. Так как при умножении чётного количества отрицательных сомножителей получаем положительное значение.

Свойства степени с натуральным показателем.

Чтобы умножить степени с одинаковыми основаниями мы основания не меняем, а показатели степеней складываем:

хm · хn = хm + n

например: 71.7 · 7 — 0.9 = 71.7+( — 0.9) = 71.7 — 0.9 = 70.8

Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем:

хm / хn = хm — n , где, m > n,

например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6

При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.

(уm )n = у m · n

например: (23)2 = 2 3·2 = 26

Если необходимо рассчитать возведение в степень произведения, то в эту степень возводится каждый множитель

(х · у)n = хn · у m ,

например:(2·3)3 = 2n · 3 m ,

При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби

(х / у)n = хn / уn

например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53.

Последовательность выполнения расчетов при работе с выражениями содержащими степень.

При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.

Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.

Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.

Что такое степень с отрицательным показателем (отрицательная степень)? Как выполнить возведение числа в отрицательную степень? Как возвести в отрицательную степень дробь?

Определение.

В частности, число в степени минус один — это число, обратное данному:

Если n — целое число, то речь идет о степени с целым отрицательным показателем и равенство верно для любого a, отличного от нуля (т.е. при a≠0).

Если n — дробное число, то речь идет о степени с рациональным показателем:

(m — целое число, n — натуральное число). Степень с дробным показателем определена только для положительных a (a>0).

В частности,

Дробь в степени с отрицательным показателем равна обратному этой дроби числу в степени с показателем, противоположным данному:

Другими словами, чтобы возвести дробь в отрицательную степень, надо эту дробь «перевернуть»(числитель и знаменатель поменять местами) и изменить знак в показателе степени.

Дробь в минус первой степени — это «перевернутая» дробь.

В частности,

Рассмотрим примеры возведения чисел в степень с отрицательным показателем.

Для ускорения вычислений используем таблицу степеней.

Примеры.

Чтобы возвести в отрицательную степень смешанное число, надо сначала перевести его в неправильную дробь:

Возведем числа в степень с дробным отрицательным показателем:

При возведении в отрицательную степень десятичной дроби можно сначала перевести ее в обыкновенную и, если возможно, сократить:

Как возводить в отрицательную степень

Возведение в отрицательную степень – один из основных элементов математики, который часто встречается при решении алгебраических задач. Ниже приведена подробная инструкция.

1 Как возводить в отрицательную степень – теория

Когда мы число в обычную степень, мы умножаем его значение несколько раз. Например, 33 = 3×3×3 = 27. С отрицательной дробью все наоборот. Общий вид по формуле будет иметь следующий вид: a-n= 1/an. Таким образом, чтобы возвести число в отрицательную степень, нужно единицу поделить на данное число, но уже в положительной степени.

2 Как возводить в отрицательную степень – примеры на обычных числах

Держа вышеприведенное правило на уме, решим несколько примеров.

Пример 1:

4-2 = 1/42 = 1/16
Ответ: 4-2 = 1/16

Пример 2:

-4-2 = 1/-42 = 1/16.
Ответ -4-2 = 1/16.

Но почему ответ в первом и втором примерах одинаковый? Дело в том, что при возведении отрицательного числа в четную степень (2, 4, 6 и т.д.), знак становится положительным. Если бы степень была четной, то минус сохранился:

-4-3 = 1/(-4)3 = 1/(-64)

3 Как возводить в отрицательную степень – числа от 0 до 1

Вспомним, что при возведении числа в промежутке от 0 до 1 в положительную степень, значение уменьшается с возрастанием степени. Так например, 0,52 = 0,25. 0,25< 0,5. В случае с отрицательной степенью все обстоит наоборот. При возведении десятичного (дробного) числа в отрицательную степень, значение увеличивается.

Пример 3: Вычислить 0,5-2
Решение: 0,5-2 = 1/1/2-2 = 1/1/4 = 1×4/1 = 4.
Ответ: 0,5-2 = 4

Разбор (последовательность действий):

Пример 4: Вычислить 0,5-3
Решение: 0,5-3 = (1/2)-3 = 1/(1/2)3 = 1/(1/8) = 8

Пример 5: Вычислить -0,5-3
Решение: -0,5-3 = (-1/2)-3 = 1/(-1/2)3 = 1/(-1/8) = -8
Ответ: -0,5-3 = -8

Исходя из 4-го и 5-ого примеров, сделаем несколько выводов:

  • Для положительного числа в промежутке от 0 до 1 (пример 4), возводимого в отрицательную степень, четность или нечетность степени не важна, значение выражения будет положительным. При этом, чем больше степень, тем больше значение.
  • Для отрицательного числа в промежутке от 0 до 1 (пример 5), возводимого в отрицательную степень, четность или нечетность степени неважна, значение выражения будет отрицательным. При этом, чем больше степень, тем меньше значение.

4 Как возводить в отрицательную степень – степень в виде дробного числа

Выражения данного типа имеют следующий вид: a-m/n, где a – обычное число, m – числитель степени, n – знаменатель степени.

Рассмотрим пример:
Вычислить: 8-1/3

Решение (последовательность действий):

Если задание нужно выполнить в сжатые сроки, а долго мучаться нет желания, можно воспользоваться несколькими нижеприведенными онлайн-ресурсами:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *