Как раскрывать скобки?

Раскрытие скобок: правила и примеры (7 класс)

Однако если мы имеем дело с алгебраическим выражением, содержащим переменную — например таким: \(2(x-3)\) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила.

Правила раскрытия скобок

Пример. Раскройте скобку \((1+y-7x)\).
Решение: \((1+y-7x)=1+y-7x\).

Пример. Упростите выражение: \(3+(5-2x)\).
Решение: Раскрываем скобку согласно правилу, а затем приводим подобные слагаемые:

Пример. Раскройте скобку и приведите подобные слагаемые: \((x-11)+(2+3x)\).
Решение: \((x-11)+(2+3x)=x-11+2+3x=4x-9\).

Здесь нужно пояснить, что у \(a\), пока оно стояло в скобке, был знак плюс (просто его не писали), и после снятия скобки этот плюс поменялся на минус.

Пример. Раскройте скобку: \(-(4m+3)\).
Решение: \(-(4m+3)=-4m-3\).

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть: \(c(a-b)=ca-cb\)

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение: Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение: \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй: \((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

— потом второе.

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Скобка в скобке

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение, просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение:

Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

Продолжаем изучать основы алгебры. В данном уроке мы научимся раскрывать скобки в выражениях. Раскрыть скобки означает избавить выражение от этих скобок.

Чтобы раскрывать скобки, нужно выучить наизусть два правила. При регулярных занятиях раскрывать скобки можно с закрытыми глазами, и про те правила которые требовалось заучивать наизусть, можно благополучно забыть.

Первое правило раскрытия скобок

Рассмотрим следующее выражение:

8 + (−9 + 3)

Значение данного выражения равно 2. Раскроем скобки в данном выражении. Раскрыть скобки означает избавиться от них, не влияя на значение выражения. То есть после избавления от скобок значение выражения 8 + (−9 + 3) по прежнему должно быть равно двум.

Первое правило раскрытия скобок выглядит следующим образом:

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Итак, мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Этот плюс нужно опустить вместе со скобками. Иными словами, скобки исчезнут вместе с плюсом, который перед ними стоял. А то, что было в скобках запишется без изменений:

Мы получили выражение без скобок 8−9+3. Данное выражение равно 2, как и предыдущее выражение со скобками было равно 2.

8 + (−9 + 3) = 2

8 − 9 + 3 = 2

Таким образом, между выражениями 8+(−9+3) и 8−9+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

8 + (−9 + 3) = 8 − 9 + 3

2 = 2

Пример 2. Раскрыть скобки в выражении 3 + (−1 − 4)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

3 + (−1 − 4) = 3 − 1 − 4

Пример 3. Раскрыть скобки в выражении 2 + (−1)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

2 + (−1) = 2 − 1

В данном примере раскрытие скобок стало своего рода обратной операцией замене вычитания сложением. Как это понимать?

В выражении 2 − 1 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 2 + (−1). Но если в выражении 2 + (−1) раскрыть скобки, то получится изначальное 2 − 1.

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после каких-нибудь преобразований. То есть избавить его от скобок и сделать проще.

Например, упростим выражение 2a + a− 5b + b.

Чтобы упростить данное выражение, можно привести подобные слагаемые. Напомним, что для приведения подобных слагаемых, нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:

Получили выражение 3a + (−4b). В этом выражении раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок, то есть опускаем скобки вместе с плюсом, который стоит перед этими скобками:

3a + (−4b) = 3a − 4b

Таким образом, выражение 2a+a−5b+b упрощается до 3a−4b.

Раскрыв одни скобки, по пути могут встретиться другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в следующем выражении:

2 + (−3 + 1) + 3 + (−6)

Здесь два места, где нужно раскрыть скобки. В данном случае применимо первое правило раскрытия скобок, а именно опускание скобок вместе с плюсом, который стоит перед этими скобками:

2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6

Пример 3. Раскрыть скобки в выражении 6+(−3)+(−2)

В обоих местах, где имеются скобки, перед ними стоит плюс. Здесь опять же применяется первое правило раскрытия скобок:

6 + (−3) + (−2) = 6 − 3 − 2

Иногда первое слагаемое в скобках записано без знака. Например, в выражении 1+(2+3−4) первое слагаемое в скобках 2 записано без знака. Возникает вопрос, а какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ напрашивается сам — перед двойкой будет стоять плюс.

На самом деле даже будучи в скобках перед двойкой стоит плюс, но мы его не видим по причине того, что его не записывают. Мы уже говорили, что полная запись положительных чисел выглядит как +1, +2, +3. Но плюсы по традиции не записывают, поэтому мы и видим привычные для нас положительные числа 1, 2, 3.

Поэтому, чтобы раскрыть скобки в выражении 1+(2+3−4), нужно как обычно опустить скобки вместе с плюсом, стоящим перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

1 + (2 + 3 − 4) = 1 + 2 + 3 − 4

Пример 4. Раскрыть скобки в выражении −5 + (2 − 3)

Перед скобками стоит плюс, поэтому применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед этими скобками. Но первое слагаемое, которое в скобках записываем со знаком плюс:

−5 + (2 − 3) = −5 + 2 − 3

Пример 5. Раскрыть скобки в выражении (−5)

Перед скобками стоит плюс, но он не записан по причине того, что до него не было других чисел или выражений. Наша задача убрать скобки, применив первое правило раскрытия скобок, а именно опустить скобки вместе с этим плюсом (даже если он невидим)

(−5) = −5

Пример 6. Раскрыть скобки в выражении 2a + (−6a + b)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:

2a + (−6a + b) = 2a −6a + b

Пример 7. Раскрыть скобки в выражении 5a + (−7b + 6c) + 3a + (−2d)

В данном выражении имеется два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:

5a + (−7b + 6c) + 3a + (−2d) = 5a −7b + 6c + 3a − 2d

Второе правило раскрытия скобок

Теперь рассмотрим второе правило раскрытия скобок. Оно применяется тогда, когда перед скобками стоит минус.

Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный.

Например, раскроем скобки в следующем выражении

5 − (−2 − 3)

Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, стоящим перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:

Мы получили выражение без скобок 5 + 2 + 3. Данное выражение равно 10, как и предыдущее выражение со скобками было равно 10.

5 − (−2 − 3) = 10

5 + 2 + 3 = 10

Таким образом, между выражениями 5−(−2−3) и 5+2+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

5 − (−2 − 3) = 5 + 2 + 3

10 = 10

Пример 2. Раскрыть скобки в выражении 6 − (−2 − 5)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, записываем с противоположными знаками:

6 − (−2 − 5) = 6 + 2 + 5

Пример 3. Раскрыть скобки в выражении 2 − (7 + 3)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:

2 − (7 + 3) = 2 − 7 − 3

Пример 4. Раскрыть скобки в выражении −(−3 + 4)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:

−(−3 + 4) = 3 − 4

Пример 5. Раскрыть скобки в выражении −(−8 − 2) + 16 + (−9 − 2)

Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить второе правило раскрытия скобок, а когда очередь доходит до выражения +(−9 − 2) нужно применить первое правило:

−(−8 − 2) + 16 + (−9 − 2) = 8 + 2 + 16 − 9 − 2

Пример 6. Раскрыть скобки в выражении −(−a − 1)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:

−(−a − 1) = a + 1

Пример 7. Раскрыть скобки в выражении −(4a + 3)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:

−(4a + 3) = −4a − 3

Пример 8. Раскрыть скобки в выражении a − (4b + 3) + 15

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:

a − (4b + 3) + 15 = a − 4b − 3 + 15

Пример 9. Раскрыть скобки в выражении 2a + (3b − b) − (3c + 5)

Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить первое правило раскрытия скобок, а когда очередь доходит до выражения −(3c+5) нужно применить второе правило:

2a + (3b − b) − (3c + 5) = 2a + 3b − b − 3c − 5

Пример 10. Раскрыть скобки в выражении −a − (−4a) + (−6b) − (−8c + 15)

Здесь три места, где нужно раскрыть скобки. Вначале нужно применить второе правило раскрытия скобок, затем первое, а затем опять второе:

−a − (−4a) + (−6b) − (−8c + 15) = −a + 4a − 6b + 8c − 15

Механизм раскрытия скобок

Правила раскрытия скобок, которые мы сейчас рассмотрели, основаны на распределительном законе умножения:

a(b+c) = ab + ac

На самом деле раскрытием скобок называют ту процедуру, когда общий множитель умножают на каждое слагаемое в скобках. В результате такого умножения скобки исчезают. Например, раскроем скобки в выражении 3×(4+5)

3 × (4 + 5) = 3 × 4 + 3 × 5

Поэтому, если нужно умножить число на выражение в скобках (или выражение в скобках умножить на число) надо говорить раскроем скобки.

Но как связан распределительный закон умножения с правилами раскрытия скобок, которые мы рассматривали ранее?

Дело в том, что перед любыми скобками стоит общий множитель. В примере 3×(4+5) общий множитель это 3. А в примере a(b+c) общий множитель это переменная a.

Если перед скобками нет чисел или переменных, то общим множителем является 1 или −1, в зависимости от того, какой знак стоит перед скобками. Если перед скобками стоит плюс, значит общим множителем является 1. Если перед скобками стоит минус, значит общим множителем является −1.

К примеру, раскроем скобки в выражении −(3b−1). Перед скобками стоит минус, поэтому нужно воспользоваться вторым правилом раскрытия скобок, то есть опустить скобки вместе с минусом, стоящим перед скобками. А выражение, которое было в скобках, записать с противоположными знаками:

−(3b − 1) = −3b + 1

Мы раскрыли скобки, воспользовавшись правилом раскрытия скобок. Но эти же скобки можно раскрыть, воспользовавшись распределительным законом умножения. Для этого сначала записываем перед скобками общий множитель 1, который не был записан:

−1(3b −1)

Минус, который раньше стоял перед скобками относился к этой единице. Теперь можно раскрыть скобки, применяя распределительный закон умножения. Для этого общий множитель −1 нужно умножить на каждое слагаемое в скобках и полученные результаты сложить.

Для удобства заменим разность, находящуюся в скобках на сумму:

−1(3b −1) = −1( 3b + (−1) )

Далее умножаем общий множитель −1 на каждое слагаемое в скобках:

−1(3b −1) = −1(3b + (−1)) = −1 × 3b + (−1) × (−1) = −3b + 1

Как и в прошлый раз мы получили выражение −3b+1. Каждый согласится с тем, что в этот раз затрачено больше времени на решение столь простейшего примера. Поэтому разумнее пользоваться готовыми правилами раскрытия скобок, которые мы рассматривали в данном уроке:

−(3b − 1) = −3b + 1

Но не мешает знать, как эти правила работают.

В данном уроке мы научились ещё одному тождественному преобразованию. Вместе с раскрытием скобок, вынесением общего за скобки и приведением подобных слагаемых можно немного расширить круг решаемых задач. Например:

Раскрыть скобки и привести подобные слагаемые в следующем выражении:

Здесь нужно выполнить два действия — сначала раскрыть скобки, а потом привести подобные слагаемые. Итак, по порядку:

1) Раскрываем скобки:

2) Приводим подобные слагаемые:

В получившемся выражении −10b+(−1) можно раскрыть скобки:

Пример 2. Раскрыть скобки и привести подобные слагаемые в следующем выражении:

1) Раскроем скобки:

2) Приведем подобные слагаемые. В этот раз для экономии времени и места, не будем записывать, как коэффициенты умножаются на общую буквенную часть

Пример 3. Упростить выражение 8m+3m и найти его значение при m=−4

1) Сначала упростим выражение. Чтобы упростить выражение 8m+3m, можно вынести в нём общий множитель m за скобки:

8m+3m = m(8+3)

2) Находим значение выражения m(8+3) при m=−4. Для этого в выражение m(8+3) вместо переменной m подставляем число −4

m (8 + 3) = −4 (8 + 3) = −4 × 8 + (−4) × 3 = −32 + (−12) = −44

Задания для самостоятельного решения

Задание 1. Раскройте скобки в следующем выражении: Задание 2. Раскройте скобки в следующем выражении: Задание 3. Раскройте скобки в следующем выражении: Задание 4. Раскройте скобки в следующем выражении: Задание 5. Раскройте скобки в следующем выражении: Задание 6. Раскройте скобки в следующем выражении: Задание 7. Раскройте скобки в следующем выражении: Задание 8. Раскройте скобки в следующем выражении: Задание 9. Раскройте скобки в следующем выражении: Задание 10. Раскройте скобки в следующем выражении: Задание 11. Раскройте скобки в следующем выражении: Задание 12. Раскройте скобки в следующем выражении: Задание 13. Раскройте скобки в следующем выражении: Задание 14. Раскройте скобки в следующем выражении: Задание 15. Раскройте скобки в следующем выражении: Задание 16. Раскройте скобки в следующем выражении: Задание 17. Раскройте скобки в следующем выражении: Задание 18. Раскройте скобки в следующем выражении: Задание 19. Раскройте скобки в следующем выражении: Задание 20. Раскройте скобки в следующем выражении: Задание 21. Раскройте скобки в следующем выражении: Задание 22. Раскройте скобки и приведите подобные слагаемые в следующем выражении: Задание 23. Раскройте скобки и приведите подобные слагаемые в следующем выражении:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2·(3+4) на выражение вида 2·3+2·4 без скобок. Этот прием носит название раскрытия скобок.

Определение 1

Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

  • знаки «+» или «-» перед скобками, в которые заключены суммы или разности;
  • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5+(−3)−(−7) к 5−3+7. Фактически, это тоже раскрытие скобок.

Точно также мы можем заменить произведение выражений в скобках вида (a+b)·(c+d) на сумму a·c+a·d+b·c+b·d. Такой прием также не противоречит смыслу раскрытия скобок.

Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x2·1a-x+sin(b) будет соответствовать выражение без скобок вида x2·1a-x2·x+x2·sin(b) .

Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

Приступим к рассмотрению правил раскрытия скобок.

Отрицательные числа в скобках часто встречаются в выражениях. Например, (−4) и 3+(−4). Положительные числа в скобках тоже имеют место быть.

Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. +(−a) мы заменяем на −a, −(−a) заменяется на +a. Если выражение начинается с отрицательного числа (−a), которое записано в скобках, то скобки опускаются и вместо (−a) остается −a.

Следует понимать, что записать выражение 3·(−5) как 3·−5 нельзя. Об этом речь пойдет в следующих пунктах.

Давайте посмотрим, на чем основываются правила раскрытия скобок.

Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что −(−a)=a, a−(−b)=a+b.

Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком «+» впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

Начнем с правила раскрытия скобок в произведении двух чисел.

Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел −a и −b вида (−a)·(−b) мы можем заменить на (a·b), а произведения двух чисел с противоположными знаками вида (−a)·b и a·(−b) заменить на (−a·b). Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

Рассмотрим несколько примеров.

Пример 1

Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел -435 и -2, вида(-2)·-435 . Для этого заменим исходное выражение на 2·435 . Раскроем скобки и получим 2·435 .

А если мы возьмем частное отрицательных чисел (−4):(−2), то запись после раскрытия скобок будет иметь вид 4:2

На месте отрицательных чисел −a и −b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

Выражение (−3)·2 можно преобразовать в выражение (−3·2). После этого можно раскрыть скобки: −3·2.

23·-45=-23·45=-23·45

Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

-1x+1:x-3=-1x+1:x-3=-1x+1:x-3

и

sin(x)·(-x2)=(-sin(x)·x2)=-sin(x)·x2

Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

Пример 2

Для примера, возьмем выражение 5·(−3)·(−2), которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5·3·2) и затем окончательно раскрыть скобки, получив выражение 5·3·2.

Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и -1 или -1 заменяем на (−1)·a.

Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные −1, в начало выражения. Произведение четного числа минус единиц равно 1, а нечетного – равно −1, что позволяет нам использовать знак минус.

Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении -23:(-2)·4:-67 выглядела бы следующим образом:

-23:(-2)·4:-67=-23·-12·4·-76==(-1)·23·(-1)·12·4·(-1)·76==(-1)·(-1)·(-1)·23·12·4·76=(-1)·23·12·4·76==-23·12·4·76

Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

x2·(-x):(-1x)·x-3:2.

Его можно привести к выражению без скобок x2·x:1x·x-3:2 .

Слишком сложно? Не парься, мы поможем разобраться и подарим скидку 10% на любую работу Опиши задание

Раскрытие скобок, перед которыми стоит знак «+»

Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

Пример 3

Для примера приведем выражение (12−3,5)−7. Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12−3,5)−7=+12−3,5−7. В приведенном примере знак перед первым слагаемым ставить не обязательно, так как +12−3,5−7=12−3,5−7.

Пример 4

Рассмотрим еще один пример. Возьмем выражение x+2a-3×2+1-x2-4+1x и проведем с ним действия x+2a-3×2+1-x2-4+1x==x+2a-3×2+1-x2-4+1x

Вот еще один пример раскрытия скобок:

Пример 5

2+x2+1x-x·y·z+2·x-1+(-1+x-x2)==2+x2+1x-x·y·z+2·x-1-1+x+x2

Как раскрываются скобки, перед которыми стоит знак минус

Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак «-«, скобки со знаком «-» опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

Пример 6

К примеру:

—12=12,-1x+1=-1x+1,-(-x2)=x2

Выражения с переменными могут быть преобразованы с использованием того же правила:

—x+x3-3—2·x2+3·x3·x+1x-1-x+2,

получаем x-x3-3+2·x2-3·x3·x+1x-1-x+2.

Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a1±a2±…±an)·b=(a1·b±a2·b±…±an·b) или b·( a1±a2±…±an)=(b·a1±b·a2±…±b·an), где a1, a2, …, an и b – некоторые числа или выражения.

Пример 7

Раскрыв скобки в выражении 3·x2·1-x+1x+2, получаем 3×2·1-3·x2·x+3·x2·1x+2.

Умножение скобки на скобку

Рассмотрим произведение двух скобок вида (a1+a2)·(b1+b2). Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

Формула будет иметь вид:

(a1+a2+…+am)·(b1+b2+…+bn)==a1b1+a1b2+…+a1bn++a2b1+a2b2+…+a2bn++…++amb1+amb1+…ambn

Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1−x)·(3·x·y−2·x·y3).

Раскроем скобки: 1·3·x·y−1·2·x·y3−x·3·x·y+x·2·x·y3.

Раскрытие скобок в произведениях нескольких скобок и выражений

При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2+4)·3·(5+7·8).

В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2+4)·3)·(5+7·8)=(2·3+4·3)·(5+7·8).

Умножаем скобку на скобку: (2·3+4·3)·(5+7·8)=2·3·5+2·3·7·8+4·3·5+4·3·7·8.

Скобка в натуральной степени

Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

Разберем еще один пример:

Пример 8

1x+23=1x+2·1x+2·1x+2==1x·1x+1x·2+2·1x+2·2·1x+2==1x·1x·1x+1x·2·1x+2·1x·1x+2·2·1x+1x·1x·2++1×2·2+2·1x·2+2·2·2

Деление скобки на число и скобки на скобку

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Вот еще один пример деления на скобку:

Пример 9

1x+x+1:(x+2) .

Заменим деление умножением: 1x+x+1·1x+2.

Выполним умножение: 1x+x+1·1x+2=1x·1x+2+x·1x+2+1·1x+2.

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок выполнения действий:

  • первым делом необходимо выполнить возведение скобок в натуральную степень;
  • на втором этапе производится раскрытие скобок в произведениях и частных;
  • заключительным шагом будет раскрытие скобок в суммах и разностях.

Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

Всё ещё сложно? Наши эксперты помогут разобраться

Математика. 6 класс

Математика

6 класс

Урок №30

Раскрытие скобок и заключение в скобки

Перечень рассматриваемых вопросов:

  1. Правила раскрытия скобок, перед которыми стоит знак «+» или знак «–».
  2. Правилазаключения слагаемых в скобки.

Тезаурус

Целые числа – это натуральные числа, ноль и числа противоположные натуральным.

Противоположные числа – это числа, которые отличаются только знаком и при сложении друг с другом в сумме дают 0. Число 0 противоположно самому себе.

Список литературы

Обязательная литература:

Дополнительная литература:

1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Сегодня мы продолжим рассматривать распределительный закон в двух случаях: раскрытие скобок и заключение слагаемых в скобки.

Такое выражение, как 4 – 9 – 2, часто называют суммой, потому что его можно записать в виде суммы 4 + (– 9) + (– 2).

Вспомним действия сложения и вычитания целых чисел, а также узнаем, какие ещё виды чисел существуют.

Сформулируем правило раскрытия скобок, перед которыми стоит знак «плюс».

Если сумма заключена в скобки, передкоторыми стоит знак «плюс», то при раскрытиискобок знаки слагаемых оставляют без изменения.

+ (а – b – с) = а – b – с

Пользуясь этим правилом, выполним раскрытие скобок

+ (25 – 12 + 6) = 25 – 12 + 6

+ (– 31 + 29 – 15) = – 31 + 29 – 15

Сформулируем правило раскрытия скобок, перед которыми стоит знак «минус».

Если сумма заключена в скобки, перед которыми стоит знак минус, то при раскрытии скобок знаки слагаемых меняют на противоположные.

– (а – b – с) = – а + b + с

Применим это правило при раскрытии скобок, перед которыми стоит «минус».

– (22 – 30 +19)= – 22 + 30 – 19

Теперь сформулируем правило заключения в скобки, когда пред скобкой стоит «плюс».

Если сумма заключается в скобки, передкоторыми стоит знак «+», то знаки слагаемых,заключаемых в скобки, оставляют безизменения.

– а + b – с = + (– а + b – с)

Рассмотрим числовое выражение и заключим его в скобки, поставив перед скобкой «плюс».

– 4 + 9 – 5 = + (– 4 + 9 – 5)

Сформулируем правило заключения в скобки, перед которыми будет стоять знак «минус».

Если сумма заключается в скобки, перед которыми стоит знак «–», то знаки слагаемых,заключаемых в скобки, меняют напротивоположные.

а– b + с – d = – (– a + b – c + d)

Посмотрим на примере числового выражения, как происходит заключение в скобки.

123 – 25 + 37= – (– 123 + 25 – 37)

Найдите значение выражения:

– (620 – 29) + 31

Упростим числовое выражение, применяя рассмотренные ранее правила.

Решение

– (620 – 29) + 31= – 620 + 29 + 31= – 620 + (29 + 31) =

=– 620 + 60 = – 560

Ответ: – 560

Найдите значение выражения:

(8 ∙ 75 – 600) – 8 ∙ 75

Снова упростим числовое выражение.

Решение

(8 ∙ 75 – 600) – 8 ∙ 75 = 8 ∙ 75 – 600 – 8 ∙ 75 =

= 8 ∙ 75 + (– 600) + (– 8 ∙ 75) = 8 ∙ 75 + (– 8 ∙ 75) + (– 600) =

= (8 ∙ 75 + (– 8 ∙ 75)) + (– 600) = (8 ∙ 75 – 8 ∙ 75) – 600 =

= 8 ∙ (75 – 75) – 600 =8 ∙ 0– 600 = 0 – 600 = – 600

Ответ: – 600

Таким образом, на этом уроке мы сформулировали правила раскрытия скобок, перед которыми стоит знак «+» или знак «–», сформулировали правила заключения слагаемых в скобки.

Научилисьупрощать числовые выражения, применяя правила раскрытия скобоки правила заключения слагаемых в скобки.

Дополнительный материал

Мы изучили с вами различные виды чисел. Вспомним, как они называются:

– натуральные;

– простые;

– составные;

– взаимно простые;

– целые;

– положительные, х ˃ 0;

– отрицательные, х < 0;

– противоположные;

– неположительные, х ≤ 0;

– неотрицательные, х ≥ 0.

Помимо этих чисел есть ещё иррациональные, рациональные, действительные числа. О них мы узнаем позже, а сейчас мы рассмотрим совершенные и дружественные числа.

Совершенное число – это число, сумма собственных делителей которого (т. е. делителей, меньших самого числа) равна самому числу.

Наименьшие совершенные числа

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 +14.

Сумма всех чисел, обратных делителям совершенного числа, включая его самого, равна 2.

Например,

Поисками таких совершенных чисел занимались великие математики: Рене Декарт, Леонард Эйлер.

В настоящее время известно 46 совершенных чисел.

Пифагор говорил: «Мой друг тот, кто является моим вторым я, как числа 220 и 284».

Эти числа замечательны тем, что сумма делителей каждого из них равна второму числу. Такие числа были названы дружественными.Любая пара дружественных чисел имеет одинаковую чётность. Не существует взаимно простых дружественных чисел.

На сегодняшний день известно более 1100 пар дружественных чисел, найденных или подбором вручную, или перебором на компьютере.

Разбор заданий тренировочного модуля

Тип 1.Разместите нужные подписи под изображениями.

Какие правила представлены?

  1. – а + b – с = + (– а + b – с)
  2. – (а – b – с) = – а + b + с

Варианты ответов:

– сочетательный закон сложения;

– переместительный закон сложения;

– раскрытие скобок;

– заключение в скобки.

Для ответа на вопрос задания обратимся к теоретическому материалу сегодняшнего урока.

Правильный ответ:

  1. заключение в скобки
  2. раскрытие скобок

Тип 2. Вставьте в текст нужные слова.

Если сумма заключена в …, перед которыми стоит знак «…», то при раскрытии скобок …слагаемых …без изменения.

Варианты ответов:

– скобки;

– которыми;

– знаки;

– оставляют;

– изменяют.

Для ответа на вопрос задания обратимся к теоретическому материалу сегодняшнего урока.

Правильный ответ

Если сумма заключена в скобки, перед которыми стоит знак «+», то при раскрытиискобок знаки слагаемых оставляют без изменения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *