Энергия измеряется

В чём измеряется электричество? Что такое Ватт? Разница между понятием киловатт и киловатт-час

Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.

Единицы измерения напряжения

Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.

Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.

Измерение силы тока

Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.

Измерение сопротивления

Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.

Человеческое тело имеет сопротивление от двух до десяти килоОм.

Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.

Измерение мощности

Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.

Измерение электроэнергии по счётчику

Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.

Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.

Ватт (обозначение: Вт , W ) — в системе СИ единица измерения мощности.

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Из-за схожих названий, киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к электроприборам. Однако эти две единицы измерения относятся к разным физическим величинам. В ваттах и, следовательно, киловаттах измеряется мощность, то есть количество энергии, потребляемое прибором за единицу времени. Ватт-час и киловатт-час являются единицами измерения энергии, то есть ими определяется не характеристика прибора, а количество работы, выполненной этим прибором.

Эти две величины связаны следующим образом. Если лампочка мощностью в 100 Вт работала на протяжении 1 часа, её работа потребовала 100 Вт·ч энергии, или 0,1 кВт·ч. 40-ваттная лампочка потребит такое же количество энергии за 2,5 часа. Мощность электростанции измеряется в мегаваттах, но количество проданной электроэнергии будет измеряться в киловатт-часах (мегаватт-часах).

Следовательно Килова́тт-час (кВт·ч) — внесистемная единица измеренияработы или количества произведенной энергии. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Интересные факты

С помощью 1 кВт·ч можно добыть 75 кгугля, 35 кгнефти, испечь 88 буханок хлеба, выткать 10 метровситца, вспахать 2,5 соткиземли

— Вольт (часто обозначается просто V) — это величина напряжения, которое толкает ток по цепи. В Европе ток, снабжающий домашние строения, обычно имеет напряжение в 240 вольт, хотя напряжение может варьировать до 14 вольт выше или ниже этой величины.

— Ампер (амп. или А, для сокращения) — это величина, которая используется для измерения силы тока, т.е. количества электрических заряженных частиц, называемых электронами, которые проходят через данную точку цепи каждую секунду. Биллионы электронов необходимы, чтобы получить один ампер. Величина, выраженная в амперах, определяется частично напряжением и частично сопротивлением.

— Ом — величина, служащая для измерения сопротивления. Она названа в честь немецкого физика 19 века Георга Симона Ома, который установил закон, гласящий, что сила тока, проходящего через проводник, обратно пропорциональна сопротивлению. Этот закон можно выразить уравнением: Вольты/Омы = Амперы. Следовательно, если вам известны две из названных величин, вы можете вычислить и третью.

— Ватт (W) — это величина энергии, показывающая, какое количество тока в приборе потребляется в любой момент. Соотношение между вольтами, амперами и ваттами выражено другим уравнением, которое поможет вам сделать любые расчеты. Они вам могут понадобиться для вычислений в данной книге:

Вольты х Амперы = Ватты

Принято пользоваться киловаттом (kW) как единицей энергии для крупных вычислений. Один киловатт равен одной тысяче ваттов.

— Киловатт-час — это величина для измерения полного количества потребляемой энергии. Например, если вы из расходуете 1 kW энергии за 1 час, это будет отражено на счетчике, и это значение израсходованной электроэнергии будет включено в вашу книгу расчета за электричество.

5 Единицы измерения тепловой энергии

Значение потребленной тепловой энергии (количества теплоты ) может выводиться измерения – Гкал, ГДж, МВтч, кВтч. тепловая энергия может передаваться потребителю с помощью двух видов теплоносителей: горячая вода или водяной пар.

Тепловая энергия может быть измерена в виде:

теплоты (количество теплоты), которая является характеристикой процесса теплообмена и определяется количеством энергии, получаемым (отдаваемым) телом в процессе теплообмена; в международной системе единиц (СИ) измеряется в джоулях (Дж), устаревшая единица — калория (1 кал = 4,18 Дж)).

энтальпии теплоносителя , которая является термодинамическим потенциалом (или функцией состояния) и определяется массой, температурой и давлением теплоносителя, в международной системе единиц (СИ) измеряется в калориях

Энтальпию теплоносителя, используют в качестве меры (количественной характеристики) тепловой энергии. Технологические особенности тепловой энергии предопределяют своеобразие его отпуска и приемки и, как следствие, порядок учета тепловой энергии, который зависит, во-первых, от вида теплоносителя, с помощью которого передается тепловая энергия; во-вторых, от системы теплоснабжения, подразделяющейся на открытые водяные (или паровые) и закрытые.

Измерение тепловой энергии и ее учет не являются тождественными понятиями, поскольку измерение есть нахождение значения физической величины опытным путем при помощи средств измерения, а учет тепловой энергии — использование результатов измерения.

Термин электроэнергия (электрическая энергия, электричество) является физическим и широко распространенным термином. В быту и промышленности он означает процесс производства (выработки), передачи и распределения электроэнергии, которая может быть получена 2 способами:

  • от энергопоставляющей компании;
  • с помощью специальных устройств, называемых генераторами.

Единицей измерения потребления электроэнергии является кВт-час. Электричество обладает рядом положительных свойств и благодаря им она широко применяется во всех отраслях нашего хозяйства и, конечно, в быту. К ним относят:

  1. простоту выработки;
  2. возможность передачи на огромные расстояния;
  3. способность преобразовываться в другие виды энергии;
  4. легко и просто распределяться между разными потребителями.

В настоящее время тяжело представить производство, сельское хозяйство и быт людей без использования электричества. С его помощью освещаются здания, помещения и территории, работает различная техника, оборудование и устройства, передвигается электротранспорт, обогреваются дома и производственные площади, осуществляется связь и многое другое.

Генерация (преобразование различных видов энергии в электрическую) электроэнергии происходит с помощью тепло-, гидро-, ядерной и альтернативной энергетики. Вырабатывается электроэнергия на специальных электростанциях, функционирование и принцип действия которых определяется их названием.

Активная и реактивная электроэнергия

Передача электроэнергии осуществляется по линиям воздушным или кабельным. Такие линии называют электрическими сетями. Расчет потребляемой электроэнергии с абонентами производится с учетом полной мощности тока, проходящего через электрическую цепь. Затраты полной мощности делят на 2 показателя энергии:

  • активная;
  • реактивная.

Активная энергия, которая является составляющей выработанной полной мощности (измеряется в кВ·А), совершает полезную работу и у большинства электроприборов в расчетах она совпадает с ней. Например, если в паспорте на какое-то устройство (утюг, электропечь, обогреватель и т.д.) указана активная мощность в кВт, то и полная мощность будет такой же, только уже в кВ·А.

В электрических цепях с реактивными элементами (емкостной или индуктивной нагрузкой) часть полной мощности расходуется не на совершение полезной роботы. Это и будет реактивная электроэнергия. Такое понятие характерно для цепей переменного тока. Здесь присутствует такое явление, как несоответствие фазы напряжения фазе тока. Происходит или ее опережение (при емкостной нагрузке) или отставание (при индуктивной нагрузке). Потери происходят из-за нагревания. Многие бытовые и промышленные приборы и оборудование имеют реактивную составляющую (электродвигатели, переносной электроинструмент, бытовая техника и т.д.). Тогда при расчете за потребленную электроэнергию вводят поправочный коэффициент мощности. Обозначается он как cos fi и его величина лежит обычно в пределах от 0,6 до 0,9 (указывается в паспортных данных на конкретное электроустройство). Например, если в паспорте переносного инструмента указана мощность в 0,8 кВт и значение cos = 0,8, то в этом случае полная потребляемая мощность составит — 1 кВт(0,8/0,8). Считается негативным явлением и при уменьшении показателя cos снижается полезная мощность.

Обратите внимание! При отсутствии или потере паспорта на конкретное электроустройство для вычисления полной мощности применяют коэффициент cos = 0,7.

Чем выше значение cos , тем меньше потери активной электроэнергии и, конечно, такое электричество будет стоить дешевле. Для повышения этого коэффициента используются различные компенсирующие устройства. Это могут быть генераторы опережающего тока, батареи конденсаторов и др. устройства.

Помимо передачи по проводникам существует еще беспроводная передача электроэнергии. В данный момент существует технология беспроводной зарядки мобильных телефонов и некоторых бытовых устройств, электромобилей и т.п. Они имеют ограничения по дальности и малую эффективность передачи энергии, поэтому говорить об их широком применении не приходится.

Единица измерения энергии

Определение

Энергия — это физическая величина служащая мерой разных форм движения и взаимодействия материи, мерой перехода разных форм материи.

Энергия отображает способность физической системы к совершению работы, при этом работа является мерой изменения энергии. Из этого следует, что работа и энергия имеют одинаковые единицы измерения.

Единицы измерения энергии в Международной системе единиц

В международной системе единиц (СИ) джоуль (Дж) — единица измерения энергии и работы. Исходя из механического определения работы:

\ \

Джоуль не является основной единицей системы СИ. Через основные единицы джоуль легко выразить, используя механическое определение работы и единицы измерения соответствующих величин:

\=\left\left=Н\cdot м=\frac{кг\cdot м}{с^2}\cdot м=\frac{кг\cdot м^2}{с^2}.\]

Такую же размерность можно получить, если использовать определение энергии вида:

\

где $c$ — скорость света; $m$ — масса тела. Исходя из выражения (2), имеем:

\=\left=кг\cdot {\left(\frac{м}{с}\right)}^2=\frac{кг\cdot м^2}{с^2}.\]

И так, мы убедились, что джоуль — единица измерения энергии. Насколько велик джоуль можно понять, если решить простую задачу: тело массой 2 кг движется со скоростью 1$\frac{м}{с}$ , какова его кинетическая энергия? Вычислим кинетическую энергию ($E_k$) нашего тела используя ее определение:

\

получаем:

\

Единицы измерения энергии в других системах единиц

В системе СГС (сантиметр, грамм, секунда) энергия (и работа) измеряются в эргах (эрг). При этом одни эрг равен:

\

Зная, что:

\

получаем:

\

В технических расчетах встречается такая единица измерения энергии как килограммометр (кгм) или килограмм силы (кгс) на метр (м): (кгсм). При этом считают, что:

\

При расчетах тепла часто в качестве единицы измерения энергии используют калорию. Калорию определяют как:

\

Гигакалорию (Гкал) применяют в теплоэнергетике, коммунальных хозяйствах, система отопления.

Энергию можно выражать в киловатт часах:

\

В основном данную единицу измерения используют в электроэнергетике.

В атомной и квантовой физике применяют такую единицу измерения энергии как электрон-вольт (эВ). При этом полагают, что:

\

Электрон — вольт — это энергия, которую приобретает частица, имеющая элементарный заряд (заряд электрона), если она перемещается между точками поля разность которых 1 В:

\

Примеры задач с решением

Пример 1

Задание. Какое количество теплоты выделится при полном сгорании древесного угля, масса которого составляет $m=$1 кг. Переведите полученный ответ в калории.

Решение. Количество теплоты $(Q)$, выделяемое при сгорании угля, найдем, используя формулу:

\

где $r=2,7\cdot {10}^7\frac{Дж}{кг}$ — удельная теплота сгорания древесного угля. Можно проводить вычисления:

\

Задача решена в системе СИ. Используя соотношение:

\

переведем полученный результат в калории:

\

Ответ. $Q=6,4\cdot {10}^7$ кал

Пример 2

Задание. Вычислите количество энергии необходимое для превращения $m=$100 г воды в пар при температуре, равной $t=$1000С. Запишите ответ в СГС.

Решение. Энергия $\(E)$, необходимая для перехода жидкости в пар равна количеству теплоты (Q), которое должно получить масса этого вещества при парообразовании:

\

Теплоту парообразования найдем как:

\

где $\lambda =2,3\cdot {10}^6\frac{Дж}{кг}$ — удельная теплота парообразования воды. Вычислим искомую энергию, учитывая (2.1) и (2.2):

Энергия

У этого термина существуют и другие значения, см. Энергия (значения).

Энергия

,

Размерность

Единицы измерения

СИ

Дж

СГС

эрг

Эне́ргия (др.-греч. ἐνέργεια — «действие, деятельность, сила, мощь») — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».

Фундаментальный смысл

С фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нётер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени.

Энергия и работа

Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах.

  • Механическая работа численно равна изменению механической энергии.

В специальной теории относительности

Энергия и масса

Основная статья: Эквивалентность массы и энергии

Согласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна

где E — энергия системы, m — её масса, c — скорость света. Несмотря на то, что исторически предпринимались попытки трактовать это выражение как полную эквивалентность понятия энергии и массы, что, в частности, привело к появлению такого понятия как релятивистская масса, в современной физике принято сужать смысл этого уравнения, понимая под массой массу тела в состоянии покоя (так называемая масса покоя), а под энергией — только внутреннюю энергию, заключённую в системе.

Энергия тела, согласно законам классической механики, зависит от системы отсчета, то есть неодинакова для разных наблюдателей. Если тело движется со скоростью v относительно некоего наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно будет казаться неподвижным. Соответственно, для первого наблюдателя кинетическая энергия тела будет равна, , где m — масса тела, а для другого наблюдателя — нулю.

Эта зависимость энергии от системы отсчета сохраняется также в теории относительности. Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса.

Зависимость энергии тела от скорости рассматривается уже не так, как в ньютоновской физике, а согласно вышеназванной формуле Эйнштейна:

,

где — инвариантная масса. В системе отсчета, связанной с телом, его скорость равна нулю, а энергия, которую называют энергией покоя, выражается формулой:

.

Это минимальная энергия, которую может иметь массивное тело. Значение формулы Эйнштейна также в том, что до неё энергия определялась с точностью до произвольной постоянной, а формула Эйнштейна находит абсолютное значение этой постоянной.

Энергия и импульс

Специальная теория относительности рассматривает энергию как компоненту 4-импульса (4-вектора энергии-импульса), в который наравне с энергией входят три пространственные компоненты импульса. Таким образом энергия и импульс оказываются связанными и оказывают взаимное влияние друг на друга при переходе из одной системы отсчёта в другую.

В квантовой механике

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

В квантовой механике величина энергии пропорциональна частоте и двойственна времени. В частности, в силу фундаментальных причин принципиально невозможно измерить абсолютно точно энергию системы в каком-либо процессе, время протекания которого конечно. При проведении серии измерения одного и того же процесса значения измеренной энергии будут флуктуировать, однако среднее значение всегда определяется законом сохранения энергии. Это приводит к тому, что иногда говорят, что в квантовой механике сохраняется средняя энергия.

В общей теории относительности

В общей теории относительности время не является однородным, поэтому возникают определённые проблемы при попытке введения понятия энергии. В частности, оказывается невозможным определить энергию гравитационного поля как тензор относительно общих преобразований координат.

Энергия и энтропия

Внутреняя энергия (или энергия хаотического движения молекул) является самым «деградированным» видом энергии — она не может превращаться в другие виды энергии без потерь (см.: энтропия).

Физическая размерность

Энергия E имеет размерность, равную:

Описание Формула
Силе, умноженной на длину E ~ F·l
Давлению, умноженному на объём E ~ P·V
Импульсу, умноженному на скорость E ~ p·v
Массе, умноженной на квадрат скорости E ~ m·v²
Заряду, умноженному на напряжение E ~ q·U
Мощности, умноженной на время E ~ N·t

В системе величин LMT энергия имеет размерность .

Соотношения между единицами энергии

Единица Эквивалент
в Дж в эрг в межд. кал в эВ
1 Дж 1 107 0,238846 0,624146·1019
1 эрг 10−7 1 2,38846·10−8 0,624146·1012
1 межд. Дж 1,00020 1,00020·107 0,238891 0,624332·1019
1 кгс·м 9,80665 9,80665·107 2,34227 6,12078·1019
1 кВт·ч 3,60000·106 3,60000·1013 8,5985·105 2,24693·1025
1 л·атм 101,3278 1,013278·109 24,2017 63,24333·1019
1 межд. кал (calIT) 4,1868 4,1868·107 1 2,58287·1019
1 термохим. кал (калТХ) 4,18400 4,18400·107 0,99933 2,58143·1019
1 электронвольт (эВ) 1,60219·10−19 1,60219·10−12 3,92677·10−20 1

Виды энергии

Виды энергии:
Механическая
Электрическая
Электромагнитная
Химическая
Ядерная
‹♦› Тепловая
Вакуума
Гипотетические:
Тёмная

Механика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией.

Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий).

Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.

В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества. См. также: химический потенциал.

Энергия взрыва иногда измеряется в тротиловом эквиваленте.

Кинетическая

Основная статья: Кинетическая энергия

Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

Потенциальная

Основная статья: Потенциальная энергия

Потенциальная энергия — скалярная физическая величина, характеризует запас энергии некоего тела (или материальной точки), находящегося в потенциальном силовом поле, который идет на приобретение (изменение) кинетической энергии тела за счет работы сил поля. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы.

Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

Электромагнитная

Основная статья: Энергия электромагнитного поля Дополнительные сведения: Электромагнитное излучение

Гравитационная

Основная статья: Гравитационная энергия

Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационную энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.

Ядерная

Основная статья: Ядерная энергия

Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.

Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента.

Внутренняя

Основная статья: Внутренняя энергия

Внутренняя энергия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутреннюю энергию тела нельзя измерить напрямую. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между её значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Химический потенциал

Основная статья: Химический потенциал

Химический потенциал — один из термодинамических параметров системы, а именно энергия добавления одной частицы в систему без совершения работы.

Энергия взрыва

Основная статья: Взрыв Дополнительные сведения: Тротиловый эквивалент

Взрыв — физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов.

При химическом взрыве, кроме газов, могут образовываться и твёрдые высокодисперсные частицы, взвесь которых называют продуктами взрыва. Энергию взрыва иногда измеряют в тротиловом эквиваленте — мере энерговыделения высокоэнергетических событий, выраженной в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.

Проблемы энергопотребления

Существует довольно много форм энергии, большинство из которых так или иначе используются в энергетике и различных современных технологиях.

Темпы энергопотребления растут во всем мире, поэтому на современном этапе развития цивилизации наиболее актуальна проблема энергосбережения.

Условно источники энергии можно поделить на два типа: невозобновляемые и постоянные. К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, неэкологична, и многие из них истощаются. К постоянным источникам можно отнести энергию солнца, энергию, получаемую на ГЭС и т. д.

История термина

Термин «энергия» происходит от слова energeia, которое впервые появилось в работах Аристотеля.

Томас Юнг первым использовал понятие «энергия» в современном смысле слова

Маркиза Эмили дю Шатле в книге «Уроки физики» (фр. Institutions de Physique, 1740), объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда, чтобы показать: энергия движущегося объекта пропорциональна его массе и квадрату его скорости (не скорости самой по себе как полагал Исаак Ньютон).

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила. Гаспар-Гюстав Кориолис впервые использовал термин «кинетическая энергия» в 1829 году, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль), математики (Эмиль Клапейрон и Герман Гельмгольц) — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии». Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия». В 1881 году Уильям Томсон заявил перед слушателями:

Само слово энергия, хотя и было впервые употреблено в современном смысле доктором Томасом Юнгом приблизительно в начале этого века, только сейчас входит в употребление практически после того, как теория, которая дала определение энергии, … развилась от просто формулы математической динамики до принципа, пронизывающего всю природу и направляющего исследователя в области науки.

Оригинальный текст (англ.)

The very name energy, though first used in its present sense by Dr Thomas Young about the beginning of this century, has only come into use practically after the doctrine which defines it had … been raised from mere formula of mathematical dynamics to the position it now holds of a principle pervading all nature and guiding the investigator in the field of science.

В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat) и «энергетика» (англ. energetics). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии.

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.

В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства).

В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии:

Существует факт, или, если угодно, закон, управляющей всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечено. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним.

Оригинальный текст (англ.)

— Фейнмановские лекции по физике

См. также

  • Тензор энергии-импульса
  • Эквивалентность массы и энергии
  • Тёмная энергия
  • Количество теплоты
  • Виды норм удельной затраты энергии и требования к ним

Примечания

Ссылки

  • Энергия в Физической энциклопедии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *