Длина отрезка через координаты

Отрезок. Формула длины отрезка.

Отрезком обозначают ограниченный двумя точками участок прямой. Точки – концы отрезка.

Общеизвестный факт, что каждая точка А плоскости имеет свои координаты (х, у).

Даны А и В — точки плоскости с координатами (х1y1) и (х2,у2).

В данном примере вектор AB задан координатами (х2— х1, y2— y1). Квадрат длины вектора будет равен сумме квадратов его координат. Следовательно, расстояние d между точками А и В, или, что то же самое, длина вектора АВ, вычисляется согласно формуле:

d2= (х2— х1)2+ (y2— y1)2.

Извлекая квадратный корень из выражения, находим:

Эта формула длины отрезка предоставляет возможность рассчитывать расстояние между двумя произвольными точками плоскости, при условии, что известны координаты этих точек

Вышеуказанную формулу длины отрезка можно доказать и другим способом. В системе координат заданы координаты крайних точек отрезка координатами его концов(х1y1) и (х2,у2).

Прочертим прямые лини через эти точки перпендикулярно к осям координат, в результате имеем прямоугольный треугольник. Первоначальный отрезок является гипотенузой образовавшегося треугольника. Катеты треугольника сформированы отрезками, их длиной будет проекция гипотенузы на оси координат.

Установим длину этих проекций.

В рассмотренном случае |AB| выступает длиной отрезка.

Вычислим длину отрезка АВ, для этого извлечем квадратный корень. Результатом является все та же формула длины отрезков по известным координатам конца и начала.

Длина отрезка

Отрезком называют часть прямой линии, состоящей из всех точек этой линии, которые расположены между данными двумя точками — их называют концами отрезка.

Рассмотрим первый пример. Пусть в плоскости координат задан двумя точками некий отрезок. В данном случае его длину мы можем найти, применяя теорему Пифагора.

Итак, в системе координат начертим отрезок с заданными координатами его концов (x1; y1) и (x2; y2). На оси X и Y из концов отрезка опустим перпендикуляры. Отметим красным цветом отрезки, которые являются на оси координат проекциями от исходного отрезка. После этого перенесем параллельно к концам отрезков отрезки-проекции. Получаем треугольник (прямоугольный). Гипотенузой у данного треугольника станет сам отрезок АВ, а его катетами являются перенесенные проекции.

Рассмотрим следующий способ нахождения длины отрезка. Для этого нам необходимо знать координаты двух точек в какой-либо системе. Рассмотрим данный вариант, применяя двухмерную Декартову систему координат.

Итак, в двухмерной системе координат даны координаты крайних точек отрезка. Если проведем прямые лини через эти точки, они должны быть перпендикулярными к оси координат, то получим прямоугольный треугольник. Исходный отрезок будет гипотенузой полученного треугольника. Катеты треугольника образуют отрезки, их длина равна проекции гипотенузы на оси координат. Исходя из теоремы Пифагора, делаем вывод: для того чтобы найти длину данного отрезка, нужно найти длины проекций на две оси координат.

Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1.

Рассчитаем длину отрезка А, для этого найдем квадратный корень:

Длина отрезка по координатам

Каждый отрезок определяется двумя точками, между которыми он заключен, и которые называются его концами. Если координаты точек известны, то можно вычислить длину заданного отрезка.

Рассмотрим отрезок КР. Его концы заданы координатами (x1; y1) и (x2; y2) соответственно. В таком случае, воспользовавшись теоремой Пифагора, можно рассчитать его длину. Рассмотрим, как это делается.
На координатной плоскости проведем отрезок КР, концы которого имеют координаты (x1; y1) и (x2; y2). Из концов отрезка проведем к координатным осям перпендикуляры. Полученные отрезки на координатных осях будут являться проекциями заданного отрезка на эти оси.
Полученные проекции переместим, двигаясь параллельно относительно каждой оси, к концам заданного отрезка. Таким образом, получим прямоугольный треугольник, гипотенузу которого нужно найти, так как она же является исходным отрезком. Соответственно перенесенные проекции — это катеты треугольника.
Можно найти длину проекций. Из рисунка хорошо видно, что длина проекции на ось Оу равна разнице ординат точек К и Р, то есть у2 — у1. Соответственно, проекция на ось Ох также будет равна разнице, только абсцисс концов отрезка: х2 — х1.
К треугольнику применим теорему Пифагора, согласно которой запишем:

Обозначение модуля отрезка КР указывает на то, что рассчитывается длина этого отрезка.
Чтобы вычислить не квадрат длины, а саму длину, достаточно извлечь квадратный корень из обеих частей уравнения:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *