Диагональ ромба

Диагонали ромба

Когда в ромбе проводятся диагонали, они делят его на четыре конгруэнтных прямоугольных треугольника, катетами которого являются половины диагоналей. В любом из полученных прямоугольных треугольников можно, зная гипотенузу (сторона ромба), вычислить оба катета. Для этих целей используются тригонометрические отношения синуса и косинуса в прямоугольном треугольнике — так как оба катета, примем их временно за a и b, неизвестны, для вычислений понадобится один из острых углов в треугольнике.

Чтобы перевести эти формулы в параметры ромба, необходимо связать стороны треугольника со сторонами и диагоналями ромба, а также острый угол треугольника с углами ромба.

Сторона ромба, как было оговорено, становится гипотенузой треугольника, а половины диагоналей берут на себя роль катетов. Тогда в обратном порядке, чтобы найти полноценные диагонали, нужно будет каждый вычисленный катет увеличить в два раза.

Угол, используемый в синусе и косинусе для нахождения катетов и затем диагоналей ромба, является ничем иным как половинным углом самого ромба, так как диагонали ромба являются биссектрисами его углов. То есть будет справедливо следующее равенство:

αромба=2 αтреугольника
Или
αромба/2=αтреугольника

Теперь для выведения общей формулы диагоналей ромба через сторону ромба и его угол (кстати, выбор острого или тупого угла не сказывается на результате расчетов) выписанные замены должны быть подставлены в исходные формулы треугольника, с которых начинался алгоритм вычислений.

Произведя вычисления обратным ходом, можно также найти сторону ромба через диагонали или угол между сторонами ромба.

Как найти диагональ ромба, если известна площадь(42) и другая диагональ(6)?

Доказать равенство этого множества: 1) логической проверкой обоих включений (метод подмножеств); 2) используя формулы алгебры множеств (то есть, упрощ ая заданные выражения). А∩(А∩B)∪B⁻(не B)=А∪В⁻(не B) СРОЧНО!!! Найдите количество целых отрицательных решений неравенства Пожалуйста помогите! Срочно нужна ваша помощь! А Даю много балов (х+1)(х + 7х +10) Постройте график функции y= х+2 и определите, при каких значениях т прямая у = m имеет графиком ровно одну общую точкк Дано: прямая призма с основанием прямоугольный треугольник; a = 3дм, с = 5дм, h = √3 дм. Найти: V. Периметр прямоугольника 42см а его площадь 90см в квадрате Определи чему равна длина и ширина прямоугольника Сечение вд, равное 4 см, перпендикулярно плоскости треугольника ABC со стороной AC 8 см и площадью 12 см2. Найти расстояние от точки D до линии AC. 4 см-ге тең ВД кесіндісі АС қабырғасы 8 см, ауданы 12 см2 болатын АВС үшбұрышының жазықтығына перпендикуляр. Д нүктесінен АС түзуіне дейінгі ара қашықтықты табыңыз. Помогите пожалуйста!!! Дано: параллелепипед; V=24 см^3; h=3 м Найти: S0 (эс нулевое) Решите пожалуйста заранее спасибо) Прошу помощи в матиматике ​

Ромб — частный случай параллелограмма, у которого все стороны равны, а противоположные — параллельны. Отрезки, соединяющие противоположные вершины ромба, называются его диагоналями. Они пересекаются между собой под прямым углом и делятся в точке пересечения пополам. Диагонали делят ромб на два равнобедренных треугольника и четыре одинаковых прямоугольных треугольника, у которых гипотенузой является сторона ромба (а), углом — половина угла ромба, сторонами (катетами) — половина диагоналей. Используя тригонометрические отношения находим катеты треугольника как произведение гипотенузы на синус и косинус половины известного угла. Чтобы найти второй угол, нужно из 180 градусов вычесть величину известного нам угла. Диагонали D, d ромба через сторону и половинный угол определяем по формуле:
где D — большая диагональ, d — меньшая диагональ ромба, a — сторона ромба, углы ромба α,β. Чтобы найти диагонали D, d через сторону и угол, воспользуемся формулами:

D = 2a × cos (α/2) = 2a × sin (β/2)

d = 2a × cos (β/2) = 2a × sin (α/2)

Если даны угол и сторона ромба, можно определить его высоту, как произведение стороны на синус угла. Произведение высоты на сторону ромба позволит определить его площадь. Площадь ромба через две его диагонали равна половине их произведений. Если известна площадь ромба и одна из его диагоналей, можно найти другую диагональ. Так как в ромбе все стороны равны, то его периметр равен произведению одной стороны на количество всех его сторон — четыре.

Диагонали ромба обладают рядом особенностей, которые позволяют использовать их в вычислениях самих по себе. Во-первых, диагонали ромба пересекаются под прямым углом, что значит, что они образуют прямоугольные треугольники во внутреннем пространстве фигуры со стороной в качестве гипотенузы. Во-вторых, узнать длину катетов этих треугольников достаточно просто, так как точкой пересечения – вершиной прямого угла, диагонали делятся на две равные части. Подставив это в теорему Пифагора, можно найти сторону ромба как половину квадратного корня из произведения диагоналей. (рис.115.2) a=√(〖d_1〗^2+〖d_2〗^2 )/2

Чтобы найти высоту ромба через диагонали, надо умножить выражение, соответствующее стороне на синус найденного угла, как отношение катета к гипотенузе в прямоугольном треугольнике. (рис.115.1) h=a sin⁡α=sin⁡α √(〖d_1〗^2+〖d_2〗^2 )/2

Радиус окружности, вписанной в ромб, представляет собой перпендикуляр стороны, проведенный к точке пересечения диагоналей, при продлении которой ровно в два раза получается высота ромба. Соответственно, чтобы найти радиус вписанной окружности через диагонали ромба, нужно разделить полученную формулу для высоты на два. (рис.115.3) r=h/2=sin⁡α √(〖d_1〗^2+〖d_2〗^2 )/4

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *