3 свойства прямоугольного треугольника

Сайт учителя математики А.В.Капитановой

1-й признак (по 2 сторонам и углу между ними): если у треугольников равны две стороны и угол между ними, то такие треугольники равны между собой.

2-й признак (по стороне и двум прилежащим углам): если у треугольников равны сторона и два угла, прилежащие к данной стороне, то такие треугольники равны между собой.Примечание: пользуясь тем, что сумма углов треугольника постоянна и равна , легко доказать, что условие «прилежания» углов не является необходимым, то есть признак будет верен и в такой формулировке: «… равны сторона и два угла, то …».

3-й признак (по 3 сторонам): если у треугольников равны все три стороны, то такие треугольники равны между собой.

Естественно, все эти признаки остаются верными и для прямоугольных треугольников. Однако у прямоугольных треугольников есть одна существенная особенность – у них всегда есть пара равных прямых углов. Поэтому данные признаки для них упрощаются. Итак, сформулируем признаки равенства прямоугольных треугольников:

1-й признак (по двум катетам): если у прямоугольных треугольников катеты попарно равны, то такие треугольники равны между собой (Рис. 2).

Дано:

Рис. 2. Иллюстрация первого признака равенства прямоугольных треугольников

Доказать:

Доказательство: в прямоугольных треугольниках: . Значит, мы можем воспользоваться первым признаком равенства треугольников (по 2 сторонам и углу между ними) и получить: .

2-й признак (по катету и углу): если катет и острый угол одного прямоугольного треугольника равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны между собой (Рис. 3).

Дано:

Рис. 3. Иллюстрация второго признака равенства прямоугольных треугольников

Доказать:

Доказательство: сразу отметим, что тот факт, что равны углы, прилежащие к равным катетам, не является принципиальным. Действительно, сумма острых углов прямоугольного треугольника (по свойству 1) равна . Значит, если равна одна пара из этих углов, то равна и другая (так как их суммы одинаковы).

Доказательство же данного признака сводится к использованию второго признака равенства треугольников (по 2 углам и стороне). Действительно, по условию равны катеты и пара прилежащих к ним углов. Но вторая пара прилежащих к ним углов состоит из углов . Значит, мы можем воспользоваться вторым признаком равенства треугольников и получить: .

3-й признак (по гипотенузе и углу): если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны между собой (Рис. 4).

Дано:

Рис. 4. Иллюстрация третьего признака равенства прямоугольных треугольников

Доказать:

Доказательство: для доказательства этого признака можно сразу воспользоваться вторым признаком равенства треугольников – по стороне и двум углам (точнее, следствием, в котором указано, что углы не обязательно должны быть прилежащими к стороне). Действительно, по условию: , , а из свойств прямоугольных треугольников следует, что . Значит, мы можем воспользоваться вторым признаком равенства треугольников, и получить: .

4-й признак (по гипотенузе и катету): если гипотенуза и катет одного прямоугольного треугольника равны соответственно гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны между собой (Рис. 5).

Дано:

Рис. 5. Иллюстрация четвёртого признака равенства прямоугольных треугольников

Доказать:

Доказательство: для доказательства этого признака воспользуемся признаком равенства треугольников, который мы сформулировали и доказали на прошлом уроке, а именно: если у треугольников равны две стороны и больший угол, то такие треугольники являются равными. Действительно, по условию у нас есть две равных стороны. Кроме того, по свойству прямоугольных треугольников: . Осталось доказать, что прямой угол является наибольшим в треугольнике. Предположим, что это не так, значит, должен быть ещё хотя бы один угол, который больше . Но тогда сумма углов треугольника уже будет больше . Но это невозможно, значит, такого угла в треугольнике быть не может. Значит, прямой угол является наибольшим в прямоугольным треугольнике. А значит, можно воспользоваться сформулированным выше признаком, и получить: .

Сформулируем теперь ещё одно свойство, характерное только для прямоугольных треугольников.

Свойство

Катет, лежащий против угла в , в 2 раза меньше гипотенузы (Рис. 6).

Дано:

Рис. 6.

Доказать: AB

Доказательство: выполним дополнительное построение: продлим прямую за точку на отрезок, равный . Получим точку . Так как углы и – смежные, то их сумма равна . Поскольку , то и угол .

Значит, прямоугольные треугольники (по двум катетам: – общий, – по построению) – первый признак равенства прямоугольных треугольников.

Из равенства треугольников следует равенство всех соответствующих элементов. Значит, . Откуда: . Кроме того, (из равенства всё тех же треугольников). Значит, треугольник – равнобедренный (так как у него равны углы при основании), но равнобедренный треугольник, один из углов которого равен , – равносторонний. Из этого следует, в частности, что .

Доказательство теоремы о свойстве катета прямоугольного треугольника , лежащего против угла в 30 градусов .

У трикутнику ABCкути B и C видносяться як 5:3 а кут А на 80 бильший за их ризницею Дан треугольник АВС: А (-3; -4; -5), В(1; 0; 3), С(2; 7; -3). Найдите косинус угла В.​ Диагональ основания прямоугольного параллелепипеда равна k, величина угла между диагоналями основания равна α, диагональ меньшей боковой грани соста вляет с плоскостью основания угол β. Найдите объем и площадь боковой поверхности параллелепипеда.Пожалуйста подробное решение Какое из утверждений не является признаком равенства прямоугольных треугольников? 1. Если катеты одного прямоугольного треугольника соответственно рав ны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники раны. 4. Если два острых угла одного прямоугольного треугольника соответственно равны двум острым углам другого прямоугольного треугольника, то такие треугольники равны. Прямоугольная площадка длиной 80 метров и шириной 25 метров наклонена так, что одна из меньших сторон находится выше противоположной стороны на 1,2 ме тра. Сколько кубических метров грунта нужно насыпать, чтобы сделать площадку горизонтальной? Срочно!!!Заранее спасибо! В треугольнике АВС АС=ВС, угол А равен 750 . Найдите угол С. Какое из утверждений верное? 1. В треугольнике биссектриса, проведенная к основанию, является высотой. 2. В равнобедренном треугольнике биссектриса, м едиана и высота, проведенные из любой вершины – три разных отрезка. 3. В треугольнике биссектриса, проведенная к основанию, является медианой. 4 .В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Найдите координаты вектора 2а̄ + 3b̄, если а̄ {2;0; -3}, b̄ {5; -1;2}​ Найдите координаты точки К, если А(0; 3; 4) и В(1; 4; 4), а точка К – середина отрезка АВ.​

Прямоугольные треугольники

Тема: Повторение

Урок: Прямоугольные треугольники

1. Стандартные обозначения в прямоугольных треугольниках

Определение. Прямоугольный треугольник – треугольник, один из углов которого прямой (равен ).

Прямоугольный треугольник – частный случай обычного треугольника. Поэтому все свойства обычных треугольников для прямоугольных сохраняются. Но есть и некоторые частные свойства, обусловленные наличием прямого угла.

Рассмотрим прямоугольный треугольник (см. Рис. 1). Сразу договоримся употреблять общепринятые обозначения:

– прямой угол;

– гипотенуза;

– катеты;

Рис. 1.

Рассмотрим свойства прямоугольного треугольника.

Свойство 1. Сумма углов и прямоугольного треугольника равна .

Доказательство. Вспомним, что сумма углов любого треугольника равна . Учитывая тот факт, что , получаем, что сумма оставшихся двух углов равна То есть,

Доказано.

2. Свойства прямоугольного треугольника (сумма острых углов, соотношение длин катетов и гипотенузы, неравенство треугольника)

Свойство 2. В прямоугольном треугольнике гипотенуза больше любого из катетов (является самой большой стороной).

Доказательство. Вспомним, что в треугольнике против большего угла лежит большая сторона (и наоборот). Из доказанного выше свойства 1 следует, что сумма углов и прямоугольного треугольника равна . Так как угол треугольника не может равняться 0, то каждый из них меньше . Значит, является самым большим, а, значит, напротив него лежит наибольшая сторона треугольника. Значит, гипотенуза является наибольшей стороной прямоугольного треугольника, то есть: .

Доказано.

Свойство 3. В прямоугольном треугольнике гипотенуза меньше суммы катетов.

Доказательство. Это свойство становится очевидным, если вспомнить неравенство треугольника.

Неравенство треугольника

В любом треугольнике сумма любых двух сторон больше третьей стороны.

Из данного неравенства сразу же следует свойство 3.

Примечание: несмотря на то, что каждый из катетов по отдельности меньше гипотенузы, их сумма оказывается больше. В числовом примере это выглядит так: , но .

Доказано.

4. Свойство катета, лежащего против угла в

Стоит отметить, что верно и обратное утверждение: если в прямоугольном треугольнике гипотенуза в два раза больше одного из катетов, то острый угол, лежащий напротив этого катета, равен .

Сформулируем ещё один важный признак прямоугольного треугольника.

Примечание: признак означает, что если какое-то утверждение верно, то треугольник является прямоугольным. То есть признак позволяет идентифицировать прямоугольный треугольник.

Важно не путать признак со свойством – то есть, если треугольник прямоугольный, то у него есть такие свойства… Часто признаки и свойства являются взаимно обратными, но далеко не всегда. Например, свойство равностороннего треугольника: в равностороннем треугольнике есть угол . Но это не будет признаком равностороннего треугольника, так как не любой треугольник, у которого есть угол , является равносторонним.

Можно привести и более жизненный пример: свойство слова «хлеб» – в слове «хлеб» 4 буквы. Но наличие 4 букв не является признаком слова «хлеб», так как существует множество слов из 4 букв.

5. Признак прямоугольного треугольника (медиана равна половине стороны, к которой проведена)

Итак, признак прямоугольного треугольника:

Если в треугольнике медиана равна половине стороны, к которой она проведена, то данный треугольник является прямоугольным, причём медиана проведена из вершины прямого угла.

Примечание: напомним, что медиана – линия, соединяющая вершину треугольника с серединой противоположной стороны (см. Рис. 7).

Дано:

Рис. 7.

Доказать:

Доказательство: поскольку , то треугольники – равнобедренные. Значит, углы при основаниях каждого из этих треугольников равны. То есть, , . Тогда сумма углов треугольника равна Значит, . Но: , что и требовалось доказать.

Доказано.

В данном уроке мы рассмотрели основные свойства прямоугольных треугольников, изученные ранее в 7 классе. В частности, вспомнили признаки равенства, а также другие признаки и свойства прямоугольных треугольников.

Список литературы

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических наук «Открытый урок» (Источник).
  2. Glavsprav.ru (Источник).
  3. Bymath.net (Источник).

Домашнее задание

  1. В прямоугольном треугольнике , – биссектриса, . Найти длину катета , если см.
  2. На гипотенузе прямоугольного треугольника обозначили точку так, что . Докажите, что точка равноудалена от точек , и .
  3. Найти острые углы прямоугольного треугольника, если они относятся как 5:13.
  4. Медиана , проведенная к гипотенузе, равняется см. .
  5. В треугольнике , – биссектриса, . Отрезок на см меньше отрезка . Найти биссектрису .

Вспомним, что прямоугольным называют треугольник, который содержит прямой угол. Две стороны, образующие прямой угол, называют катетами, а противолежащую сторону — гипотенузой прямоугольного треугольника.

Теорема:

Сумма углов треугольника равна 180 градусов.

Свойство:

Сумма двух острых углов прямоугольного треугольника равна 90 градусов.

Доказательство:

Пусть АВС — прямоугольный треугольник, у которого ∠С=90 градусов.

Так как сумма углов треугольника равна 180 градусов, то:

Что и требовалось доказать.

Свойство:

Катет прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы.

Пусть АВС — прямоугольный треугольник, у которого ∠С=90 градусов, а ∠А=30 градусов. А тогда по теореме о сумме углов треугольника ∠В=60 градусов. Докажем, что катет ВС равен половине гипотенузы АВ.

Приложим к треугольнику АВС равный ему треугольник АСD следующим образом:

Получили, что у треугольника АВD все углы равны по 60 градусов, то есть он является равносторонним. Получаем:

Что и требовалось доказать.

Свойство:

Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 градусов.

Доказательство:

Пусть АВС — прямоугольный треугольник, у которого катет ВС равен половине гипотенузы АВ. Докажем, что угол ВАС=30 градусов.

Приложим к треугольнику АВС равный ему треугольник АСD следующим образом:

Получили равносторонний треугольник АВD. Известно, что все углы равностороннего треугольника равны 60 градусам. Полуаем:

Что и требовалось доказать.

Пример.

Сумма гипотенузы и катета, лежащего против угла в 30 градусов, равна 15 сантиметров. Найти длину гипотенузы.

Пусть АВС — прямоугольный треугольник. ∠А=30 градусов. Получим:

Подставим это в предыдущее равенство и получаем:

Пример.

В прямоугольном треугольнике АВС, ∠С=90 градусов, а ∠ВАС=60 градусов. Найти длину катета ВС, если высота СD треугольника АСВ равна 5 сантиметров.

Рассмотрим прямоугольный треугольник АВС. ∠АСВ=90 градусов, ∠ВАС=60 градусов. А так как сумма острых углов прямоугольного треугольника равна 90 градусов, то ∠АВС=90-60=30 градусов.

Рассмотрим треугольник ВСD, который является прямоугольным, так как СD — высота и ∠СВD=30 градусов, то катет СD лежит против угла в 30 градусов. Следовательно, по выше доказанному свойству, гипотенуза ВС=2*5=10 см.

Пример.

Отрезок СD — высота прямоугольного треугольника АВС с прямым углом С, ВС=2*ВD. Доказать, что АВ=4*ВD.

Рассмотрим прямоугольный треугольник BCD:

У него ∠ВСD=30 градусов, так как по условию ВС=2*ВD.

По условию задачи ∠АСВ=90 градусов, а ∠ВСD=30 градусов, значит, ∠АСD=60 градусов.

Так как СD — высота, то треугольник АСD — прямоугольный. ∠АСD=60 градусов. Следовательно, ∠САD=30 градусов.

Теперь рассмотрим треугольник АВС. У него ∠ВАС=30 градусов. Следовательно, гипотенуза АВ=2*ВС, так как катет ВС лежит против угла в 30 градусов. По условию задачи ВС=2*ВD.

Получаем, что АВ=4*ВD.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *