1 метр сантиметров

Единицы длины. Единицы площади. Таблица единиц площади

Введение

Вы знакомы с различными единицами длины. Какими единицами длины удобно пользоваться при измерении толщины спички или длины тельца божьей коровки? Я думаю, вы назвали миллиметры.

Единицы измерения длины

Какими единицами длины удобно пользоваться при измерении длины карандаша? Конечно, сантиметрами (см. рис. 1).

Рис. 1. Измерение длин

Какими единицами длины удобно пользоваться при измерении ширины или длины окна? Удобно измерять дециметрами.

А длину коридора или длину забора? Воспользуемся метрами (см. рис. 2).

Рис. 2. Измерение длин

Для измерения более крупных расстояний, например, расстояний между городами, используют более крупную, чем метр, единицу длины – километр (см. рис. 3).

Рис. 3. Измерение длин

В 1 километре 1000 метров.

Задание: выражение расстояния в километрах

Выразите расстояние в километрах.

1 километр – это тысяча метров, значит, число тысяч будет обозначать километры.

8000 м = 8 км

385007 м = 385 км 7 м

34125 м = 34 км 125 м

В числе количество сотен, десятков и единиц указывают метры.

Можно рассуждать по-другому: 1 км в тысячу раз больше 1 метра, значит, число километров должно быть в 1000 раз меньше числа метров. Поэтому 8000 : 1000 = 8, число 8 означает количество километров.

385007 : 1000 = 385 (ост. 7). Число 385 обозначает километры, остаток – количество метров.

34125 : 1000 = 34 (ост. 125), то есть 34 километра 125 метров.

Прочитайте таблицу единиц длины (см. рис. 4). Постарайтесь ее запомнить.

Рис. 4. Таблица единиц длины

Мерки для измерения площадей

Для измерения площадей используют разные мерки. Квадратный сантиметр – это квадрат со стороной в 1 см (см. рис. 5), квадратный дециметр – это квадрат со стороной в 1 дм (см. рис. 6), квадратный метр – это квадрат со стороной в 1 м (см. рис. 7).

Рис.5. Квадратный сантиметр

Рис. 6. Квадратный дециметр

Рис. 7. Квадратный метр

Для измерения больших площадей используют квадратный километр – это квадрат, сторона которого равна 1 км (см. рис. 8).

Рис. 8. Квадратный километр

Слова «квадратный километр» сокращенно при числе записывают так – 1 км2, 3 км2, 12 км2. В квадратных километрах измеряют, например, площади городов, площадь Москвы S = 1091 км2.

Задание: выразить в квадратных метрах

Вычислим, сколько квадратных метров в одном квадратном километре. Чтобы найти площадь квадрата, надо длину умножить на ширину. Нам дан квадрат со стороной в 1 км. Мы знаем, что 1 км = 1000 м, значит, чтобы найти площадь такого квадрата, умножим 1000 м на 1000 м, получится 1 000 000 м2 = 1 км2.

Выразите в квадратных метрах 2 км2. Будем рассуждать так: так как 1 км2 – это 1 000 000 м2, то есть число квадратных метров в миллион раз больше, чем число квадратных километров, поэтому умножим 2 на 1 000 000, получим 2 000 000 м2.

56 км2: умножим 56 на 1 000 000, получим 56 000 000 м2.

202 км2 15 м2: 202 ∙1 000 000 + 15 = 202 000 000 м2 + 15 м2 = 202 000 015 м2.

Для измерения маленьких площадей используются квадратный миллиметр (мм2). Это квадрат, сторона которого равна 1 мм. Слова «квадратный миллиметр» при числе записывают так: 1 мм2, 7 мм2, 31 мм2.

Вычислим, сколько квадратных миллиметров в одном квадратном сантиметре. Чтобы найти площадь квадрата, надо длину умножить на ширину. Нам дан квадрат со стороной 1 см. Мы знаем, что 1 см = 10 мм. Значит, чтобы найти площадь такого квадрата, умножим 10 мм на 10 мм, получится 100 мм2.

Задание: выразить в квадратных миллиметрах

Выразите в квадратных миллиметрах 4 см2. Будем рассуждать так: так как 1 см2 – это 100 мм2, то есть число мм2 в 100 раз больше числа см2, поэтому умножим 4 на 100, получим 400 мм2.

16 см2: умножим 16 на 100 = 1600 мм2.

31 см2 7 мм2: это 31 ∙ 100 + 7 = 3100 + 7 = 3107 мм2.

Ар и гектар

В жизни часто употребляются такие единицы площади, как ар и гектар. Ар – это квадрат со стороной 10 м (см. рис. 9). При числах ар записывают короче: 1 а, 5 а, 12 а.

Рис. 9. 1 ар

1 а = 100 м2, поэтому его часто называют соткой.

Рис. 10. 1 гектар

Вычислите, сколько аров в 1 гектаре.

1 га = 10000 м2

1 а = 100 м2, значит, 10000 : 100 = 100 а

1 га = 100 а

Теперь внимательно рассмотрите таблицу единиц площади (см. рис. 11), постарайтесь ее запомнить.

Рис. 11. Таблица единиц площади

На уроке мы познакомились с новой единицей длины – км и единицами площади – м2, км2, а, га.

Список рекомендованной литературы

Конвертер величин

Подробнее об объеме и единицах измерения в кулинарных рецептах

Мерная кружка с молоком

Общие сведения

Объем — это пространство, занимаемое веществом или предметом. Также объем может обозначать свободное пространство внутри емкости. Объем — трехмерная величина, в отличие от, например, длины, которая является двумерной. Поэтому объем плоских или двумерных объектов равен нулю.

Единицы объема

Кубический метр

Единица измерения объема в системе СИ — кубический метр. Стандартное определение одного кубического метра — это объем куба с ребрами длиной в один метр. Также широко используются производные единицы, например, кубические сантиметры.

Литр

Литр — одна из наиболее часто используемых единиц в метрической системе. Он равен объему куба с ребрами длиной 10 см:
1 литр = 10 см × 10 см × 10 см = 1000 кубических сантиметров

Это все равно, что 0,001 кубических метров. Масса одного литра воды при температуре 4°C примерно равна одному килограмму. Часто используются также миллилитры, равные одному кубическому сантиметру или 1/1000 литра. Миллилитр обычно обозначают как мл.

Джилл

Ресторан, специалирующийся на блюдах из морепродуктов в городе Нара, Япония

Джиллы — единицы объема, используемые в США для измерения алкогольных напитков. Один джилл — это пять жидких унций в Британской имперской системе или четыре в американской. Один американский джилл равен четверти пинты или половине чашки. В Ирландских пабах подают горячительные напитки порциями в четверть джилла, или 35,5 миллилитра. В Шотландских порции меньше — одна пятая джилла, или 28,4 миллилитра. В Англии до недавнего времени порции были еще меньше, всего одна шестая джилла или 23,7 миллилитра. Теперь же, это 25 или 35 миллилитров в зависимости от правил заведения. Хозяева могут решать самостоятельно, какую из двух порций им подавать.

Драм

Драм, или драхма — мера объема, массы, а также монета. В прошлом эта мера использовалась в аптекарском деле и равнялась одной чайной ложке. Позже стандартный объем чайной ложки изменился, и одна ложка стала равна 1 и 1/3 драхмы.

Объемы в кулинарии

Жидкости в кулинарных рецептах обычно измеряют по объему. Сыпучие и сухие продукты в метрической системе, наоборот, измеряют по массе.

Чайная ложка

Объем чайной ложки разный в разных системах измерения. Изначально одна чайная ложка была четвертью столовой, потом — одной третьей. Именно последний объем сейчас используется в американской системе измерения. Это примерно 4,93 миллилитра. В американской диетологии размер чайной ложки равен 5 миллилитрам. В Великобритании обычно принято использовать 5,9 миллилитра, но в некоторых диетических пособиях и кулинарных книгах — это 5 миллилитров. Объем чайной ложки используемый в кулинарии обычно стандартизирован в каждой стране, но для еды используются ложки разных размеров.

Столовая ложка молока

Столовая ложка

Объем столовой ложки тоже колеблется в зависимости от географического региона. Так, например, в Америке, одна столовая ложка — это три чайных, пол-унции, примерно 14,7 миллилитра, или 1/16 американской чашки. Столовые ложки в Великобритании, Канаде, Японии, Южной Африке и Новой Зеландии — тоже содержат три чайных ложки. Так, метрическая столовая ложка — 15 миллилитров. Британская столовая ложка — 17.7 миллилитра, если чайная — 5,9, и 15, — если чайная — 5 миллилитров. Австралийская столовая ложка — ⅔ унции, 4 чайных ложки, или 20 миллилитров.

Чашка

Как мера объема, чашка не определяется так строго, как ложки. Объем чашки может варьировать от 200 до 250 миллилитров. Метрическая чашка — 250 миллилитров, а американская немного меньше, примерно 236,6 миллилитра. В американской диетологии объем чашки равен 240 миллилитрам. В Японии чашки еще меньше — всего 200 миллилитров.

Кварты и галлоны

Галлоны и кварты также имеют разную величину, в зависимости от географического региона, где они используются. В имперской системе измерения один галлон равен 4,55 литра, а в американской системе мер — 3,79 литра. В основном в галлонах измеряют топливо. Кварта равна четверти галлона и, соответственно, 1,1 литра в американской системе, и примерно 1,14 литра в имперской системе.

Пинта

В пинтах измеряют пиво даже в странах, где пинту не используют для измерения других жидкостей. В Великобритании в пинтах измеряют молоко и сидр. Пинта равна одной восьмой галлона. В некоторых других странах Содружества Наций и Европы также используют пинты, но, так как они зависят от определения галлона, а галлон имеет разный объем в зависимости от страны, пинты также не везде одинаковы. Имперская пинта равна примерно 568,2 миллилитра, а американская — 473,2 миллилитра.

Тюбик с жидким кремом объемом жидких 8 унций или 235 миллилитров

Жидкая унция

Имперская унция примерно равна 0,96 американской унции. Таким образом, в имперской унции содержится приблизительно 28,4 миллилитра, а в американской —29,6 миллилитра. Одна американская унция также приблизительно равна шести чайным ложкам, двум столовым, и одной восьмой чашки.

Вычисление объема

Метод вытеснения жидкости

Объем предмета можно вычислить с помощью метода вытеснения жидкости. Для этого его опускают в жидкость известного объема, геометрически вычисляют или измеряют новый объем, и разница этих двух величин и есть объем измеряемого предмета. Например, если при опускании предмета в чашку с одним литром воды, объем жидкости увеличится до двух литров, значит объем предмета — один литр. Таким способом можно вычислить только объем предметов, которые не впитывают жидкость.

Формулы для вычисления объема

Объем геометрических фигур можно вычислить при помощи следующих формул:

Призма: произведение площади основания призмы на высоту.

Прямоугольный параллелепипед: произведение длины, ширины и высоты.

Куб: длина ребра в третьей степени.

Эллипсоид: произведение полуосей и 4/3π.

Пирамида: одна треть произведения площади основания пирамиды и высоты.

Параллелепипед: произведение длины, ширины и высоты. Если высота неизвестна, то ее можно вычислить, используя ребро и угол, который оно образует с основанием. Если мы назовем ребро а, угол А, длину — l, а ширину — w, то объем параллелепипеда V равен:

V = l w a cos(A)

Этот объем также можно вычислить, используя свойства прямоугольных треугольников.

Конус: радиус в квадрате, умноженный на высоту и ⅓π.

Шар: радиус в третьей степени, умноженный на 4/3π.

Цилиндр: произведение площади основания цилиндра, высоты, и π: V=π r² h, где r — радиус цилиндра и h — его высота

Соотношение между объемами цилиндр:шар:конус равно 3:2:1.

Список литературы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *